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Why We Should Care About Causality

Franz H. Messerli (2012). »Chocolate Consumption, Cognitive Function, and Nobel Laureates«. New England
Journal of Medicine 367, pp. 1562–1564.
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Why We Should Care About Causality
An Ice Cream Example

▶ Correlation ̸= causation
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Why We Should Care About Causality
Explanation of the Ice Cream Example Data
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Why We Should Care About Causality
Learnings from the Ice Cream Example

▶ For prediction, correlation is sufficient

▶ E.g., knowing ice cream sales suffices to predict shark attacks
▶ For decision making (acting), causal information is required

▶ E.g., Reducing ice cream sales will not reduce shark attacks
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Causal Models
A causal model consists of

1. a causal graph G, and
2. a probability distribution P .

Remarks:
▶ G and P must be compatible (i.e., P must factorise according to G)
▶ More in-depth definitions possible, e.g., via a set of differential equations
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Causal Models
A causal model consists of

1. a causal graph G, and
2. a probability distribution P .
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Causal Models
Where Does the Causal Model Come From?

▶ In general, there is no unique causal graph that explains the data
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▶ Common assumptions:
▶ Causal sufficiency: No unobserved confounders
▶ Acyclicity: No directed cycles
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Application of Causal Models
Simpson’s Paradox

Recovery rate with drug Recovery rate without drug

Men (357 / 700 = 0.51) 81 / 87 = 0.93 234 / 270 = 0.87
Women (343 / 700 = 0.49) 192 / 263 = 0.73 55 / 80 = 0.69
Combined 273 / 350 = 0.78 289 / 350 = 0.83

The paradox:
▶ For men, taking the drug has a benefit
▶ For women, taking the drug has a benefit as well
▶ For all people combined, taking the drug has no benefit

Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell (2016). Causal Inference in Statistics: A Primer. 1st.
Wiley.
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Application of Causal Models
How to Resolve the Paradox?

▶ Should a person take the drug?
▶ Considering the data alone is not sufficient
▶ We need to understand the causal mechanisms that lead to the data

Recovery rate with drug Recovery rate without drug

Men (357 / 700 = 0.51) 81 / 87 = 0.93 234 / 270 = 0.87
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▶ Taking the drug has less benefit for women
▶ Women are more likely to take the drug than men
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Application of Causal Models
Computing the Effect of Actions

▶ Should a person take the drug?
▶ Need to compute the causal effect of taking the drug on recovery
▶ Apply the notion of an intervention do(D = d)

Gender

Drug Usage Recovery
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Application of Causal Models
Computing the Effect of Actions

▶ Should a person take the drug?
▶ Need to compute the causal effect of taking the drug on recovery
▶ Apply the notion of an intervention do(D = d)

Gender

Drug Usage Recovery

▶ Average causal effect:

ACE = E[R | do(D = 1)] − E[R | do(D = 0)] = ?

▶ If ACE > 0, taking the drug has a benefit
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Interventions: Computing the Effects of Actions
▶ Average causal effect:

ACE = E[R | do(D = 1)] − E[R | do(D = 0)]
= P (R = 1 | do(D = 1)) − P (R = 1 | do(D = 0)) = ?

▶ To compute the ACE, we have to compute the interventional distributions:
▶ P (R = 1 | do(D = 1)) = ?
▶ P (R = 1 | do(D = 0)) = ?

Gender

Drug Usage Recovery

▶ Need to remove incoming influences on D
▶ Need to segregate the data w.r.t. G (»adjust for G«)
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Interventions: Computing the Effects of Actions
▶ P (R = 1 | do(D = 1))

=
∑

g∈{0,1}
P (R = 1 | D = 1, G = g)P (G = g)

= P (R = 1 | D = 1, G = 1)P (G = 1) + P (R = 1 | D = 1, G = 0)P (G = 0)
= 0.93 · (87 + 270) / 700 + 0.73 · (263 + 80) / 700
= 0.832

▶ P (R = 1 | do(D = 0)) = 0.7818
▶ ACE = 0.832 − 0.7818 = 0.0502 > 0, i.e., taking the drug has a benefit

Recovery rate with drug Recovery rate without drug

Men (357 / 700 = 0.51) 81 / 87 = 0.93 234 / 270 = 0.87
Women (343 / 700 = 0.49) 192 / 263 = 0.73 55 / 80 = 0.69
Combined 273 / 350 = 0.78 289 / 350 = 0.83
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Interventions: Computing the Effects of Actions
Adjustment Formula

In general:
▶ Given an intervention do(X = x), we need to block all backdoor paths

▶ A backdoor path from X to Y is a non-causal path, i.e., a path that remains
after removing all outgoing edges of X

▶ E.g., backdoor paths can be blocked by adjusting for the parents Pa(X) of X

▶ Adjustment formula for parent adjustment:

P (Y = y | do(X = x))
=

∑
pa(x)

P (Y = y | X = x, Pa(X) = pa(x)) · P (Pa(X) = pa(x))

Note:
▶ Not always all parents for adjustment needed
▶ Other adjustment sets possible (that block all backdoor paths)
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Interventions: Computing the Effects of Actions
Truncated Product Formula

▶ Adjustment formula is for a single intervention do(X = x)
▶ Can be generalised to multiple interventions do(X1 = x1, . . . , Xℓ = xℓ):

P (Y1 = y1, . . . , Yk = yk | do(X1 = x1, . . . , Xℓ = xℓ))

=
k∏

i=1
P (Yi = yi | Pa(Yi) = pa(Yi))

▶ Without intervening, the distribution is given by

P (Y1 = y1, . . . , Yk = yk, X1 = x1, . . . , Xℓ = xℓ)

=
k∏

i=1
P (Yi = yi | Pa(Yi) = pa(Yi))

ℓ∏
i=1

P (Xi = xi | Pa(Xi) = pa(Xi))

▶ Here, {Y1, . . . , Yk} ∪ {X1, . . . , Xℓ} is a partition of all random variables
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From Propositional to Lifted Causal Inference
Representation of Causal Models

▶ Remember: Causal model = Causal graph + probability distribution
▶ E.g., causal Bayesian network

Gender

Drug Usage Recovery

P (G)

...G P (D | G)

...
...

...
...

G D P (R | G, D)

...
...

...
...

...
...
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From Propositional to Lifted Causal Inference
Factor Graphs as Causal Models

▶ We will use causal factor graphs instead of causal Bayesian networks
▶ Every Bayesian network can be transformed into an equivalent factor graph

Gender

Drug Usage Recovery

f1

f2 f3

G ϕ1(G)

...
...

G D ϕ2(G, D)

...
...

...
...

...
...

G D R ϕ3(G, D, R)

...
...

...
...

...
...

...
...
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From Propositional to Lifted Causal Inference
Factor Graphs as Causal Models – Semantics

▶ A factor graph compactly encodes a full joint probability distribution
▶ Semantics is given by a product over all factors:

P (R = r) = 1
Z

m∏
j=1

ϕj(Rj = rj)

▶ Originally an undirected model, but can be extended to encode causal knowledge

Brendan J. Frey (2003). »Extending Factor Graphs so as to Unify Directed and Undirected Graphical Models«.
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-2003). Morgan
Kaufmann Publishers Inc., pp. 257–264.

17 / 35



From Propositional to Lifted Causal Inference
Factor Graphs as Causal Models

▶ Example:

P (g, d, r) = 1
Z

· ϕ1(g) · ϕ2(g, d) · ϕ3(g, d, r)

Gender

Drug Usage Recovery
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f2 f3

G ϕ1(G)
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From Propositional to Lifted Causal Inference
▶ Common assumption: Data is independent and identically distributed (i.i.d.)
▶ Often not true in practice (especially in relational data)
▶ Our goal: Represent individual objects and their relationships

RevSal(alice) Sal(bob)

Com(alice) Com(bob)

Sal(charlie)Com(charlie)

f1
1 f2

1

f3
1

f1
2 f2

2f3
2

f1
3 f2

3

f3
3
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The Idea Behind Lifting
▶ The model becomes very large with many objects (e.g., employees)
▶ Assumption: There are symmetries, i.e., indistinguishable objects
▶ Idea: Group indistinguishable objects and reason over sets of objects

RevSal(alice) Sal(bob)

Com(alice) Com(bob)

Sal(charlie)Com(charlie)

f1
1 f2

1

f3
1

f1
2 f2

2f3
2

f1
3 f2

3

f3
3

Rev

Com(E) Sal(E)
g1 g2

g3

David Poole (2003). »First-Order Probabilistic Inference«. Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-2003). Morgan Kaufmann Publishers Inc., pp. 985–991.
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The Idea Behind Lifting
▶ Lifting uses a representative of indistinguishable individuals for computations

▶ Logical variables to represent groups (sets) of random variables
▶ Parfactors to represent sets of factors

▶ Lifting exploits symmetries to speed up inference

Rev

Com(E) Sal(E)

Train(E, T ) Qual(T )

g1 g2

g3

g4

g5
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Exploitation of Symmetries
▶ Consider a subgraph to illustrate the idea
▶ ComA for Com(alice), ComB for Com(bob)

ComA

Rev

ComB

f1

f2

ComA Rev ϕ1(ComA, Rev)
high high φ1
high low φ2
low high φ3
low low φ4

ComB Rev ϕ2(ComB, Rev)
high high φ1
high low φ2
low high φ3
low low φ4
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Exploitation of Symmetries ComA Rev ϕ1(ComA, Rev)
high high φ1
high low φ2
low high φ3
low low φ4

ComA

Rev

ComB

f1

f2
ComB Rev ϕ2(ComB, Rev)
high high φ1
high low φ2
low high φ3
low low φ4

▶ Assume we want to compute P (Rev):

P (Rev) =
∑

a∈range(ComA)

∑
b∈range(ComB)

P (a, Rev, b)
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Exploitation of Symmetries Com(E) Rev ϕ′
1(Com(E), Rev)

high high φ1
high low φ2
low high φ3
low low φ4

Com(E)

Rev

g1

▶ With dom(E) = {alice, bob}:

P (Rev) = 1
Z

·
( ∑

a∈range(ComA)
ϕ1(a, Rev)

)2

= 1
Z

·
( ∑

b∈range(ComB)
ϕ2(b, Rev)

)2

= 1
Z

·
( ∑

c∈range(Com(E))
ϕ′

1(c, Rev)
)|dom(E)|
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Parametric Causal Factor Graphs (PCFGs)
▶ Logical variables to represent groups of random variables
▶ Full joint probability distribution encoded by a product over all ground factors:

P (R = r) = 1
Z

∏
ϕj∈Φ

∏
ϕk∈gr(ϕj)

ϕk(Rk = rk)

Rev

Com(E) Sal(E)
g1 g2

g3

Malte Luttermann, Mattis Hartwig, et al. (2024). »Lifted Causal Inference in Relational Domains«. Proceedings
of the Third Conference on Causal Learning and Reasoning (CLeaR-2024). PMLR, pp. 827–842.
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Lifted Causal Inference in PCFGs

Rev

Com(E) Sal(E)
g1 g2

g3

▶ Is it worth the costs to send an employee to a training course?

P (Rev | do(Com(alice) = high)) − P (Rev | do(Com(alice) = low)) = ?

▶ What effect has sending all employees to a training course on the revenue?

P (Rev | do(Com(E) = high)) − P (Rev | do(Com(E) = low)) = ?
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Lifted Causal Inference in PCFGs
▶ E.g., P (Rev | do(Com(E) = high))

▶ Sets fixed value Com(E) = high
▶ Removes incoming influences from Com(E) (truncated product formula)

Rev

Com(E) Sal(E)
g1 g2

g3

▶ do(Com(E) = high) is shorthand for do(Com(e1) = high, . . . , Com(ek) = high),
where dom(E) = {e1, . . . , ek}

▶ In non-lifted model, every ei ∈ dom(E) has to be considered separately
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Lifted Causal Inference in PCFGs
▶ An intervention on a propositional random variable requires splitting of nodes
▶ E.g., P (Rev | do(Com(alice) = high))

▶ Removes alice from Com(E)
▶ Adds an additional node Com(alice)
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Partially Directed Parametric Causal Factor Graphs
▶ Often not all causal relationships are known
▶ Directed edges to represent known causal relationships
▶ Undirected edges for relationships with unknown causal directions
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g1 g2

g3

Malte Luttermann, Tanya Braun, et al. (2024b). »Estimating Causal Effects in Partially Directed Parametric
Causal Factor Graphs«. Proceedings of the Sixteenth International Conference on Scalable Uncertainty
Management (SUM-2024). Springer, pp. 265–280.
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Lifted Causal Inference in Partially Directed PCFGs
▶ An intervention is defined on a fully directed graph
▶ E.g., P (Rev | do(Com(E) = high))

▶ Sets fixed value Com(E) = high
▶ Removes incoming influences from Com(E) (truncated product formula)
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Lifted Causal Inference in Partially Directed PCFGs
General algorithm:

1. Split nodes of interventional variables (avoid grounding as much as possible)
2. Enumerate relevant edge directions to compute the effect of an action
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Theorem
To compute the effect of an intervention, it is sufficient to consider the directions of the
undirected edges that are connected to the random variables on which we intervene.
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How to Obtain a Lifted Causal Model?
▶ The Advanced Colour Passing (ACP) algorithm compresses a factor graph

▶ Start with a causal factor graph and find symmetric subgraphs
▶ Symmetric subgraphs can be grouped to obtain a lifted model
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▶ ACP originally operates on undirected factor graphs
▶ Can be extended to causal (i.e., fully directed) factor graphs
▶ Extending it to partially directed factor graphs might be more difficult
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The Advanced Colour Passing Algorithm
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Malte Luttermann, Tanya Braun, et al. (2024a). »Colour Passing Revisited: Lifted Model Construction with
Commutative Factors«. Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence
(AAAI-2024). AAAI Press, pp. 20500–20507.
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Experimental Results
▶ Comparison of run times for lifted inference
▶ d is the domain size and controls the size of the input factor graph
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Conclusions
▶ For prediction tasks, correlation is sufficient
▶ For decision making, causal information is required
▶ Data is often relational (not i.i.d.)
▶ Lifting exploits symmetries to speed up probabilistic and causal inference

RevSal(alice) Sal(bob)

Com(alice) Com(bob)

Sal(charlie)Com(charlie)

f1
1 f2

1

f3
1

f1
2 f2

2f3
2

f1
3 f2

3

f3
3

Rev

Com(E) Sal(E)
g1 g2

g3

35 / 35



Conclusions
▶ For prediction tasks, correlation is sufficient
▶ For decision making, causal information is required
▶ Data is often relational (not i.i.d.)
▶ Lifting exploits symmetries to speed up probabilistic and causal inference

RevSal(alice) Sal(bob)

Com(alice) Com(bob)

Sal(charlie)Com(charlie)

f1
1 f2

1

f3
1

f1
2 f2

2f3
2

f1
3 f2

3

f3
3

Rev

Com(E) Sal(E)
g1 g2

g3

▶ Future research: Relax assumptions (e.g., hidden confounders, cycles, . . . )
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