

Lifting Factor Graphs with Some Unknown Factors ECSQARU 2023, Arras, France

Malte Luttermann^{1,2} Ralf Möller^{1,2} Marcel Gehrke¹

 $^{\rm 1}$ Institute of Information Systems, University of Lübeck, Germany $^{\rm 2}$ German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany

September 22, 2023

Factor Graphs (Kschischang, Frey, and Loeliger, 2001)

- ► Factor graph as a compact encoding of a full joint probability distribution
- ightharpoonup Semantics of a factor graph G over a set of factors Φ :

$$P_G = \frac{1}{Z} \prod_{\phi \in \mathbf{\Phi}} \phi$$

The Problem with Propositional Factor Graphs

- ▶ Adding new people to the population increases the size of the factor graph
- ▶ Probabilistic inference requires time exponential in the number of random variables

The Problem with Propositional Factor Graphs

The Problem with Propositional Factor Graphs

Parametric Factor Graphs (Poole, 2003)

- Assumption: Symmetries in a graph
- ▶ Introduce logical variables to represent groups of random variables
 - $\triangleright \mathcal{D}(X) = \{alice, bob, dave, eve\}$
 - $\triangleright \mathcal{D}(M) = \{m_1, m_2\}$

But What to Do if Some Factors Are Unknown?

Problem Setup

- ightharpoonup Input: A factor graph G possibly containing unknown factors
- ▶ Output: A lifted representation of *G*

- ► Assign colours to random variables depending on their ranges and evidence
- Assign colour to factors depending on their potentials
- ▶ Pass colours around to detect symmetries in the graph

- ► Assign colours to random variables depending on their ranges and evidence
- Assign colour to factors depending on their potentials
- ▶ Pass colours around to detect symmetries in the graph

- ► Assign colours to random variables depending on their ranges and evidence
- ► Assign colour to factors depending on their potentials
- Pass colours around to detect symmetries in the graph

- ► Assign colours to random variables depending on their ranges and evidence
- ► Assign colour to factors depending on their potentials
- Pass colours around to detect symmetries in the graph

- ► Assign colours to random variables depending on their ranges and evidence
- ► Assign colour to factors depending on their potentials
- ▶ Pass colours around to detect symmetries in the graph

- ► Assign colours to random variables depending on their ranges and evidence
- ▶ Assign colour to factors depending on their potentials
- Pass colours around to detect symmetries in the graph

- ▶ What colour to assign to the unknown factors?
 - ► Potentials are missing
 - ▶ Only available information: Surrounding graph structure
- ► General idea:
 - 1. Known factors are coloured according to their potentials
 - 2. Unknown factors are coloured according to their 2-step neighbourhood
 - 3. Assign unknown factors and known factors the same colour if their 2-step neighbourhoods are symmetric
 - 4. Run the standard colour passing algorithm

1. Known factors are coloured according to their potentials

2. Unknown factors are coloured according to their 2-step neighbourhood

3. Assign unknown factors and known factors the same colour if their 2-step neighbourhoods are symmetric

4. Run the standard colour passing algorithm

Empirical Evaluation

- Generate factor graphs where all factors are known
- ▶ Randomly remove potentials of 5-10 percent of the factors
- ► Run LIFAGU to obtain a lifted representation
- ▶ Perform probabilistic inference on the ground truth and the lifted representation

Conclusion

- Construct a lifted representation for factor graphs with unknown factors
- Transfer known potentials to unknown factors
- Ensure a well-defined semantics and allow for lifted inference

References

- Ahmadi, Babak et al. (2013). »Exploiting Symmetries for Scaling Loopy Belief Propagation and Relational Training«. In: *Machine Learning* 92, pp. 91–132.
- Kschischang, Frank R., Brendan J. Frey, and Hans-Andrea Loeliger (2001). »Factor Graphs and the Sum-Product Algorithm «. In: *IEEE Transactions on Information Theory* 47, pp. 498–519.
- Poole, David (2003). »First-Order Probabilistic Inference«. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03). Morgan Kaufmann Publishers Inc., pp. 985–991.