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Problem Setup

» Input: A factor graph ¢(r) = 7jn:1 ¢j(rj) = Pu(r) = %w(r)
» Output: A parametric factor graph with approximately equivalent semantics as

» With a minimal approximation error
» With theoretical guarantees for the change in query results
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» Solutions (Previous Work):

» Advanced Colour Passing Algorithm (ACP, Kersting et al., 2009; Ahmadi
et al., 2013; Luttermann et al., 2024)

»> =-ACP (Luttermann et al., 2025)
» Hierarchical ACP (Speller et al., 2025)
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» With a minimal approximation error
» With theoretical guarantees for the change in query results
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» Hierarchical ACP (Speller et al., 2025)

— Better understanding of model choice
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Approximate Lifted Model Construction

» Originally strict equality between potentials required

> E.g., 01 =©1, P2 = P2, Y3 = P3, P4 = Q4

SalA ‘ Rev ‘ ¢1(SalA, Rev)

SalB ‘ Rev ‘ ¢2(SalB, Rev)

high | high V1 high | high »1
high | low V2 high | low V2
low | high ©3 low | high 03
low | low V4 low | low V4
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Approximate Lifted Model Construction

» Originally strict equality (after normalisation, o« > 0) between potentials required
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Approximate Lifted Model Construction

» So far: Allow for a small deviation between potentials for practical applicability

> Eg., 01 =), 2R @h p3 R Q5 1R Q)
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SalB ‘ Rev ‘ ¢2(SalB, Rev)
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Approximate Lifted Model Construction

» So far: Allow for a small deviation between potentials for practical applicability
> Eg. 01 R QL 92 R Ph 3R P P4 R Py

SalA ‘ Rev ‘ ¢1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)

0 high | high 01 high | high @1
@ $1 high | low o2 high | low o
- low | high 03 low | high ©5

@ s low | low 4 low | low vy

» How much deviation should be allowed and what is the impact on query results?
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e-Equivalence

» Potentials 1 € Ryg and g2 € R~ are e-equivalent if

p1 € [p2-(1—¢),p2-(14¢)] and
w2 € [p1-(1—¢),p1-(1+¢)] (Luttermann et al., 2025)

» Factors ¢1(R1,...,Ry,) and ¢o(R), ..., R)) are s-equivalent if all potentials in
their potential tables are e-equivalent; Notation: ¢ =. ¢2

Example (¢ = 0.1)
¢1(SalA, Rev) and ¢2(SalB, Rev) are e-equivalent:

SalA ‘ Rev ‘ ¢1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)

high | high 0.81 high | high 0.84
high | low 0.32 high | low 0.31
low | high 0.51 low | high 0.51
low | low 0.21 low | low 0.20
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Grouping e-Equivalent Factors

> A representative potential table is required to construct a lifted representation

SalA ‘ Rev ‘ ¢1(SalA, Rev)

SalB | Rev | ¢5(SalB, Rev)

L] high | high 01 high | high o)

@ o1 high | low 02 high | low b
0 low | high ©3 low | high A

04 low | low )

@ bo low low
CSal(B))

i

(e &

Sal(E) | Rev | ¢*(Sal(E), Rev)

high
high
low
low

high
low
high
low

1
5
©3

*

P4
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» How to choose ;7
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Grouping e-Equivalent Factors

> A representative potential table is required to construct a lifted representation

@ SalA ‘ Rev ‘ o1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)
L] high | high 01 high | high o)
@ o1 high | low 02 high | low b
0 low | high ©3 low | high A
@ b low | low 04 low | low )
|
Sal(E) | Rev | ¢*(Sal(E), Rev)
@ high | high ©]
rI'. high low o

@ o* low | high o3
low low o

» How to choose ¢f?7 — ¢f = %(gpl +¢), o*(r)= % 1 ¢i(r) (currently)
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One-dimensional e-equivalence distance

» Potentials for convenience: ¢;(k) := @i

Definition (Speller et al., 2025)

k) — ¢a(k
doo: RQO X RZO - ]R>07 doo(¢13 ¢2) = kirllflx,n { mlr‘lﬁ?ﬁ(bl)(k)ﬁb@sg ()k|?)|}}
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One-dimensional e-equivalence distance

» Potentials for convenience: ¢;(k) := ¢

Definition (Speller et al., 2025)

doo: RY) x Ry — Rup,  doo(1, P2) = | max {

=1,...,n

|p1(k) — p2(k)| }
min{|¢1 (k)| |p2(k)[}

Properties

(i) ds is non-negative and symmetric.
(i) It holds that doo (1, P2) = 0 if and only if |¢1(k) — ¢2(k)| = 0 for all
k=1,...,n, which holds only if ¢1 = ¢o.

(iii) The triangle inequality doo (1, P2) < doo(P1, @3) + doo (@3, P2) does not hold in
general for three vectors ¢1, g2, P3.

(iv) Two vectors ¢1, 2 € RZ are e-equivalent if and only if doo(¢1, ¢2) < € holds.
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One-dimensional e-equivalence distance

» Potentials for convenience: ¢;(k) := ¢

Definition (Speller et al., 2025)

doo: RY) x Ry — Rup,  doo(1, P2) = | max {

=1,...,n

|p1(k) — p2(k)| }
min{ |1 (k)l, |p2(k)[}

» Induces a distance measure for factors

» Enables pairwise comparisons and clustering

» doo(p1, ¢2) is equal to minimal g, such that ¢1 =; ¢
» Forms the backbone of hierarchical compression

» Sorting of pairwise ¢ groups based on smallest d, values
(Agglomerative clustering algorithm based on d., with complete linkage)
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Towards Explainability: A Geometric Perspective in L?
For two e-equivalent factors ¢1, ¢2 € RZ, it holds for £k = 1,...,n that:
» Comparison of Lengths:
> G i(k) € [6i(k) - iz, du(k) - (1+)] fori = 1,2

> o e [fh 14| fori=1,2
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Towards Explainability: A Geometric Perspective in L?
For two e-equivalent factors ¢1, ¢2 € RZ, it holds for £k = 1,...,n that:
» Comparison of Lengths:
> 6si(k) € [6i(k) - Tz, dilk) - (1+2)] for i = 1,2

> ‘z’;((;"’) € {1—%,14—5} fori=1,2

» Distances in LP:

> [[¢1 — @2llp < €l|illp holds for i = 1,2 -

> ~ < =g ith &' = ————<y
If [l g1 — |, < e, then ¢1 =o ¢3 holds with ¢ min {0:(k)}

212

Example (¢ = 0.01) 0.01 0.02

> (¢ — d2|lb = i1 91(k) — ¢2(k)|P = 0.01P + 0P = 0.017 = &P
€ — 001 _ 4

> E/ = —_—mm—_—_e—m—€—m—_-e— ANl
min {6,(R)} O
=13
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> If [|¢1 — p2]l, < e, then ¢y =c ¢y holds with &’ := c

k:rglir{m{@(k)}
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@ 1,02 € SV = (¢ € R™ : |gll, = 1}
> ||p1 — polp <€
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e-Equivalent Groups
Theorem (Speller et al., 2025)

Let G = {¢1,...,¢m} denote a group of pairwise e-equivalent factors and let
(1) = 27 widi(r) be the weighted mean with weights w; > 0 and >, w; = 1 for
all assignments r. Then, G* = {¢1,...,Pm, ¢} is a group of pairwise e-equivalent

factors.
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e-Equivalent Groups
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=1

w; >0, sz—l}

> ¢f(r) = 1@( )
> ¢9m(r) z:l ¢2( )

@ aes

> Nlgully € [1ie.1] or 6w € BYO0)\ BY 1, (0) = {@ € R" : 12 < [|g, < 1}
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Convex Extensions

G ={¢1,...,0m} pairwise e-equivalent

» Convex Supersets

» All pairwise e-equivalent convex supersets of GG, contain conv(¢1, ..., ¢m)
» Non-unique extension of this set in every dimension (=. not transitive)

» For hierarchical ACP — next compression level is build on maximal deviation
doo to all ¢;
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Convex Extensions

G ={¢1,...,0m} pairwise e-equivalent

» Convex Supersets

» All pairwise e-equivalent convex supersets of GG, contain conv(¢1, ..., ¢m)
» Non-unique extension of this set in every dimension (=. not transitive)

» For hierarchical ACP — next compression level is build on maximal deviation
doo to all ¢;

» Finitely Generated Convex Cone?

» Scale all factors — Check e-equivalence — Choose representative
= ¢u € conv(¢1/[|d1llp, - I/l dmllp)

» c-Equivalence is not closed under rescaling onto S?_;
(For given group G C S%_, of e-equivalent factors —

pairwise e-equivalent to G)
» Sequence of operations plays major role for sorting c-equivalent groups

b p - .
[ € Sh_y is not necessarily

9/11



Special Case: Euclidean Perspective

Definition (Cosine distance)

@1 P2

Deos: R7;[) X RQO — [0, 1], Dcos(¢17¢2) =1 0" =
1]z - [|d2ll2

which is equal to 1 — cos(6) for one 6 € [0, 7).
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Special Case: Euclidean Perspective

Definition (Cosine distance)

@1 P2

Deos: R;Lo X RQO — [0, 1], Dcos(¢17¢2) =1 0" =
1]z - [|d2ll2

which is equal to 1 — cos(6) for one 6 € [0, 7).
» If ¢1 and ¢y are exchangeable, then it holds Dcos(b1, ¢2) = 0.

@ wes

» 2Dcos(d1,2) = [|¢1 — d2ll2
arccos(l — §) fore <2

> = = the angle 6(¢) < 2
o1 == &2 & ()_{g for e > 2.

10/11



Summary

» Possible generalisation via choice of representative ¢* € conv(¢, ..., dm)

P Theoretical guarantees for the change in query results still apply
» Use of different loss functions to find optimal ¢*
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Summary

» Possible generalisation via choice of representative ¢* € conv(¢, ..., dm)
P Theoretical guarantees for the change in query results still apply
» Use of different loss functions to find optimal ¢*

» Choice of ¢ controls...
P ..the trade-off between exactness and compactness

...the distance in LP

...the angle in £? (controlling a convex cone)

...a hierarchy of convex supersets containing each other

>
>
>
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