

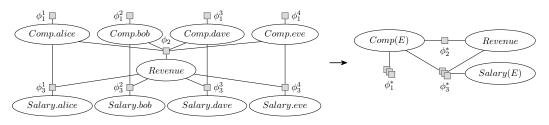
Towards Explainability of Approximate Lifted Model Construction A Geometric Perspective

Jan Speller¹, Malte Luttermann^{2,3}, Marcel Gehrke³ and Tanya Braun¹,

¹Data Science Group, University of Münster, Germany ²German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany ³Institute for Humanities-Centered Artificial Intelligence, University of Hamburg, Germany

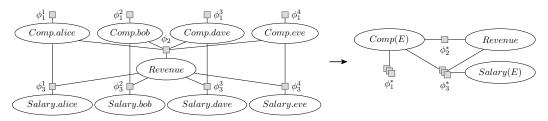
Problem Setup

- ▶ Input: A factor graph $\psi({\bm r}) = \prod_{j=1}^m \phi_j({\bm r}_j) \to P_M({\bm r}) = \frac{1}{Z} \psi({\bm r})$
- lacktriangle Output: A parametric factor graph with approximately equivalent semantics as ψ
 - With a minimal approximation error
 - ▶ With theoretical guarantees for the change in query results



Problem Setup

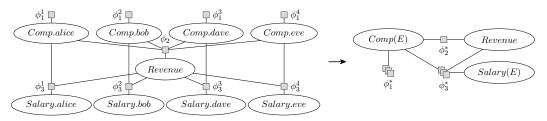
- ▶ Input: A factor graph $\psi({\bm r}) = \prod_{j=1}^m \phi_j({\bm r}_j) \to P_M({\bm r}) = \frac{1}{Z} \psi({\bm r})$
- lacktriangle Output: A parametric factor graph with approximately equivalent semantics as ψ
 - With a minimal approximation error
 - ▶ With theoretical guarantees for the change in query results



- Solutions (Previous Work):
 - Advanced Colour Passing Algorithm (ACP, Kersting et al., 2009; Ahmadi et al., 2013; Luttermann et al., 2024)
 - \triangleright ε -ACP (Luttermann et al., 2025)
 - ► Hierarchical ACP (Speller et al., 2025)

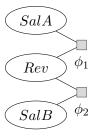
Problem Setup

- ▶ Input: A factor graph $\psi({\bm r}) = \prod_{j=1}^m \phi_j({\bm r}_j) \to P_M({\bm r}) = \frac{1}{Z} \psi({\bm r})$
- lacktriangle Output: A parametric factor graph with approximately equivalent semantics as ψ
 - With a minimal approximation error
 - ▶ With theoretical guarantees for the change in query results



- Solutions (Previous Work):
 - Advanced Colour Passing Algorithm (ACP, Kersting et al., 2009; Ahmadi et al., 2013; Luttermann et al., 2024)
 - \triangleright ε -ACP (Luttermann et al., 2025)
 - ► Hierarchical ACP (Speller et al., 2025)
- → Better understanding of model choice

- Originally strict equality between potentials required
 - ightharpoonup E.g., $\varphi_1=\varphi_1$, $\varphi_2=\varphi_2$, $\varphi_3=\varphi_3$, $\varphi_4=\varphi_4$

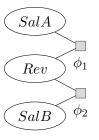


SalA	Rev	$\phi_1(SalA, Rev)$
high	high	φ_1
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	$arphi_1$
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

lacktriangle Originally strict equality (after *normalisation*, $\alpha > 0$) between potentials required

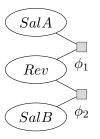
$$\blacktriangleright$$
 E.g., $\varphi_1 = \alpha \varphi_1'$, $\varphi_2 = \alpha \varphi_2'$, $\varphi_3 = \alpha \varphi_3'$, $\varphi_4 = \alpha \varphi_4'$



SalA	Rev	$\phi_1(SalA, Rev)$
high	high	φ_1
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	$lphaarphi_1'$
high	low	$lphaarphi_2'$
low	high	$lpha arphi_3'$
low	low	$lphaarphi_4'$

- ▶ So far: Allow for a small deviation between potentials for practical applicability
 - ▶ E.g., $\varphi_1 \approx \varphi_1'$, $\varphi_2 \approx \varphi_2'$, $\varphi_3 \approx \varphi_3'$, $\varphi_4 \approx \varphi_4'$

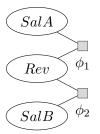


SalA	Rev	$\phi_1(SalA, Rev)$
high	high	$arphi_1$
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	$arphi_1'$
high	low	$arphi_2'$
low	high	$arphi_3'$
low	low	$arphi_4'$

► So far: Allow for a small deviation between potentials for practical applicability

► E.g.,
$$\varphi_1 \approx \varphi_1'$$
, $\varphi_2 \approx \varphi_2'$, $\varphi_3 \approx \varphi_3'$, $\varphi_4 \approx \varphi_4'$



SalA	Rev	$\phi_1(SalA, Rev)$
high	high	φ_1
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	$arphi_1'$
high	low	$arphi_2'$
low	high	$arphi_3'$
low	low	φ_4'

How much deviation should be allowed and what is the impact on query results?

ε -Equivalence

▶ Potentials $\varphi_1 \in \mathbb{R}_{>0}$ and $\varphi_2 \in \mathbb{R}_{>0}$ are ε -equivalent if

$$\begin{split} &\varphi_1 \in [\varphi_2 \cdot (1-\varepsilon), \varphi_2 \cdot (1+\varepsilon)] \text{ and} \\ &\varphi_2 \in [\varphi_1 \cdot (1-\varepsilon), \varphi_1 \cdot (1+\varepsilon)] \text{ (Luttermann et al., 2025)} \end{split}$$

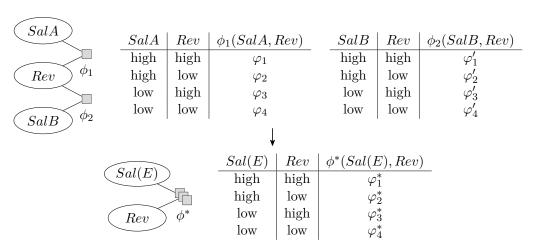
► Factors $\phi_1(R_1, \dots, R_n)$ and $\phi_2(R'_1, \dots, R'_n)$ are ε -equivalent if all potentials in their potential tables are ε -equivalent; Notation: $\phi_1 =_{\varepsilon} \phi_2$

Example ($\varepsilon=0.1$) $\phi_1(SalA,Rev)$ and $\phi_2(SalB,Rev)$ are ε -equivalent:

SalA	Rev	$\phi_1(SalA, Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$
high	high	0.81	high	high	0.84
high	low	0.32	high	low	0.31
low	high	0.51	low	high	0.51
low	low	0.21	low	low	0.20

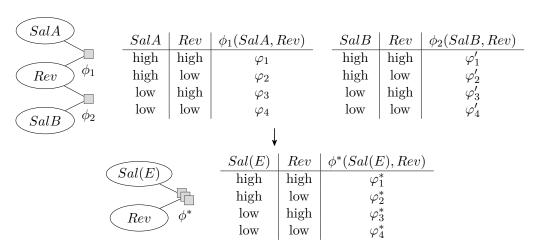
Grouping ε -Equivalent Factors

A representative potential table is required to construct a lifted representation



Grouping ε -Equivalent Factors

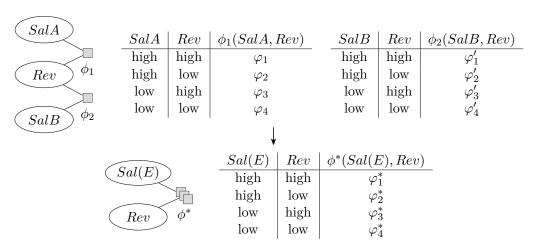
A representative potential table is required to construct a lifted representation



▶ How to choose φ_i^* ?

Grouping ε -Equivalent Factors

A representative potential table is required to construct a lifted representation



▶ How to choose φ_i^* ? $\rightarrow \varphi_i^* = \frac{1}{2}(\varphi_i + \varphi_i'), \quad \phi^*(r) = \frac{1}{m} \sum_{i=1}^m \phi_i(r)$ (currently)

One-dimensional ε -equivalence distance

▶ Potentials for convenience: $\phi_i(k) := \varphi_k$

Definition (Speller et al., 2025)

$$d_{\infty} \colon \mathbb{R}^{n}_{>0} \times \mathbb{R}^{n}_{>0} \to \mathbb{R}_{>0}, \quad d_{\infty}(\phi_{1}, \phi_{2}) := \max_{k=1,\dots,n} \left\{ \frac{|\phi_{1}(k) - \phi_{2}(k)|}{\min\{|\phi_{1}(k)|, |\phi_{2}(k)|\}} \right\}$$

One-dimensional ε -equivalence distance

▶ Potentials for convenience: $\phi_i(k) := \varphi_k$

Definition (Speller et al., 2025)

$$d_{\infty} \colon \mathbb{R}^{n}_{>0} \times \mathbb{R}^{n}_{>0} \to \mathbb{R}_{>0}, \quad d_{\infty}(\phi_{1}, \phi_{2}) := \max_{k=1,\dots,n} \left\{ \frac{|\phi_{1}(k) - \phi_{2}(k)|}{\min\{|\phi_{1}(k)|, |\phi_{2}(k)|\}} \right\}$$

Properties

- (i) d_{∞} is non-negative and symmetric.
- (ii) It holds that $d_{\infty}(\phi_1, \phi_2) = 0$ if and only if $|\phi_1(k) \phi_2(k)| = 0$ for all $k = 1, \ldots, n$, which holds only if $\phi_1 = \phi_2$.
- (iii) The triangle inequality $d_{\infty}(\phi_1, \phi_2) \leq d_{\infty}(\phi_1, \phi_3) + d_{\infty}(\phi_3, \phi_2)$ does *not* hold in general for three vectors ϕ_1, ϕ_2, ϕ_3 .
- (iv) Two vectors $\phi_1, \phi_2 \in \mathbb{R}^n_{>0}$ are ε -equivalent if and only if $d_{\infty}(\phi_1, \phi_2) \leq \varepsilon$ holds.

One-dimensional ε -equivalence distance

▶ Potentials for convenience: $\phi_i(k) := \varphi_k$

Definition (Speller et al., 2025)

$$d_{\infty} \colon \mathbb{R}^{n}_{>0} \times \mathbb{R}^{n}_{>0} \to \mathbb{R}_{>0}, \quad d_{\infty}(\phi_{1}, \phi_{2}) := \max_{k=1,\dots,n} \left\{ \frac{|\phi_{1}(k) - \phi_{2}(k)|}{\min\{|\phi_{1}(k)|, |\phi_{2}(k)|\}} \right\}$$

- Induces a distance measure for factors
- Enables pairwise comparisons and clustering
- $d_{\infty}(\phi_1,\phi_2)$ is equal to minimal ε , such that $\phi_1=_{\varepsilon}\phi_2$
- Forms the backbone of hierarchical compression
 - Sorting of pairwise ε groups based on smallest d_∞ values (Agglomerative clustering algorithm based on d_∞ with complete linkage)

For two ε -equivalent factors $\phi_1, \phi_2 \in \mathbb{R}^n_{>0}$, it holds for $k = 1, \ldots, n$ that:

- Comparison of Lengths:
 - $\phi_{3-i}(k) \in \left[\phi_i(k) \cdot \frac{1}{1+\varepsilon}, \phi_i(k) \cdot (1+\varepsilon)\right] \text{ for } i=1,2$
 - $\blacktriangleright \ \ \tfrac{\phi_{3-i}(k)}{\phi_i(k)} \in \left[\frac{1}{1+\varepsilon}, 1+\varepsilon \right] \text{ for } i=1,2$

For two ε -equivalent factors $\phi_1, \phi_2 \in \mathbb{R}^n_{>0}$, it holds for $k = 1, \ldots, n$ that:

- ► Comparison of Lengths:
 - $\phi_{3-i}(k) \in \left[\phi_i(k) \cdot \frac{1}{1+\varepsilon}, \phi_i(k) \cdot (1+\varepsilon)\right] \text{ for } i=1,2$
- ightharpoonup Distances in \mathcal{L}^p :
 - $\|\phi_1 \phi_2\|_p \le \varepsilon \|\phi_i\|_p$ holds for i = 1, 2

For two ε -equivalent factors $\phi_1, \phi_2 \in \mathbb{R}^n_{>0}$, it holds for $k = 1, \ldots, n$ that:

- Comparison of Lengths:
 - $\phi_{3-i}(k) \in \left[\phi_i(k) \cdot \frac{1}{1+\varepsilon}, \phi_i(k) \cdot (1+\varepsilon)\right] \text{ for } i=1,2$
- Distances in \mathcal{L}^p :
 - $\|\phi_1 \phi_2\|_p \le \varepsilon \|\phi_i\|_p$ holds for i = 1, 2
 - $\|\phi_1 \phi_2\|_p \leq \varepsilon_{||\varphi_1||p} \dots$ **If** $<math>\|\phi_1 \phi_2\|_p \leq \varepsilon$, then $\phi_1 =_{\varepsilon'} \phi_2$ holds with $\varepsilon' := \frac{\varepsilon}{\min \{\phi_i(k)\}}$

Example ($\varepsilon = 0.01$) $\phi_1 = \begin{pmatrix} 0.01 \\ 1.0 \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} 0.02 \\ 1.0 \end{pmatrix}$

- $\|\phi_1 \phi_2\|_p^p = \sum_{k=1}^2 |\phi_1(k) \phi_2(k)|^p = 0.01^p + 0^p = 0.01^p = \varepsilon^p$

For two ε -equivalent factors $\phi_1, \phi_2 \in \mathbb{R}^n_{>0}$, it holds for $k = 1, \ldots, n$ that:

- Comparison of Lengths:
 - $\phi_{3-i}(k) \in \left[\phi_i(k) \cdot \frac{1}{1+\varepsilon}, \phi_i(k) \cdot (1+\varepsilon)\right] \text{ for } i=1,2$
- Distances in \mathcal{L}^p :
 - $\|\phi_1 \phi_2\|_p \le \varepsilon \|\phi_i\|_p$ holds for i = 1, 2
 - $\text{If } \|\phi_1 \phi_2\|_p \leq \varepsilon \text{, then } \phi_1 =_{\varepsilon'} \phi_2 \text{ holds with } \varepsilon' := \frac{\varepsilon}{\min \ \{\phi_i(k)\}}$

For two ε -equivalent factors $\phi_1, \phi_2 \in \mathbb{R}^n_{>0}$, it holds for $k = 1, \dots, n$ that:

- Comparison of Lengths:
 - $\phi_{3-i}(k) \in \left[\phi_i(k) \cdot \frac{1}{1+\varepsilon}, \phi_i(k) \cdot (1+\varepsilon)\right] \text{ for } i=1,2$
- Distances in \mathcal{L}^p :
 - $\|\phi_1 \phi_2\|_p \le \varepsilon \|\phi_i\|_p$ holds for i = 1, 2
 - $\|\phi_1 \phi_2\|_p \le \varepsilon_{||} \varphi_i|_p \text{ noiss for } \varepsilon 1, 2$ $\text{If } \|\phi_1 \phi_2\|_p \le \varepsilon, \text{ then } \phi_1 =_{\varepsilon'} \phi_2 \text{ holds with } \varepsilon' := \frac{\varepsilon}{\min \{\phi_i(k)\}}$

$$(+)$$
 $\phi_1, \phi_2 \in S_p^{n-1} := \{ \phi \in \mathbb{R}^n : \|\phi\|_p = 1 \}$

- $\|\phi_1 \phi_2\|_p \leq \varepsilon$
- lacklet $\phi_{3-i} \in \overline{B_{\varepsilon}^p}(\phi_i) \cap S_n^{n-1}$ for i=1,2 with $\overline{B_{\varepsilon}^p}(\phi_i) := \{\phi \in \mathbb{R}^n : \|\phi \phi_i\|_p \le \varepsilon\}$

Theorem (Speller et al., 2025)

Let $G = \{\phi_1, \dots, \phi_m\}$ denote a group of pairwise ε -equivalent factors and let $\phi_\omega(\mathbf{r}) = \sum_{i=1}^m \omega_i \phi_i(\mathbf{r})$ be the weighted mean with weights $\omega_i \geq 0$ and $\sum_{i=1}^m \omega_i = 1$ for all assignments \mathbf{r} . Then, $G^* = \{\phi_1, \dots, \phi_m, \phi_\omega\}$ is a group of pairwise ε -equivalent factors.

Theorem (Speller et al., 2025)

Let $G = \{\phi_1, \ldots, \phi_m\}$ denote a group of pairwise ε -equivalent factors and let $\phi_\omega(r) = \sum_{i=1}^m \omega_i \phi_i(r)$ be the weighted mean with weights $\omega_i \geq 0$ and $\sum_{i=1}^m \omega_i = 1$ for all assignments r. Then, $G^* = \{\phi_1, \ldots, \phi_m, \phi_\omega\}$ is a group of pairwise ε -equivalent factors.

$$\mathsf{conv}(\phi_1,\ldots,\phi_m) := \left\{ \sum_{i=1}^m \omega_i \phi_i \;\middle|\; \omega_i \geq 0, \sum_{i=1}^m \omega_i = 1 \right\}$$

Theorem (Speller et al., 2025)

Let $G = \{\phi_1, \dots, \phi_m\}$ denote a group of pairwise ε -equivalent factors and let $\phi_\omega(r) = \sum_{i=1}^m \omega_i \phi_i(r)$ be the weighted mean with weights $\omega_i \geq 0$ and $\sum_{i=1}^m \omega_i = 1$ for all assignments r. Then, $G^* = \{\phi_1, \dots, \phi_m, \phi_\omega\}$ is a group of pairwise ε -equivalent factors.

$$\mathsf{conv}(\phi_1,\dots,\phi_m) := \left\{ \sum_{i=1}^m \omega_i \phi_i \;\middle|\; \omega_i \geq 0, \sum_{i=1}^m \omega_i = 1 \right\}$$

- $ightharpoonup \phi_{gm}(m{r}) := \sqrt[m]{\prod_{i=1}^m \phi_i(m{r})}$

Theorem (Speller et al., 2025)

Let $G = \{\phi_1, \dots, \phi_m\}$ denote a group of pairwise ε -equivalent factors and let $\phi_\omega(r) = \sum_{i=1}^m \omega_i \phi_i(r)$ be the weighted mean with weights $\omega_i \geq 0$ and $\sum_{i=1}^m \omega_i = 1$ for all assignments r. Then, $G^* = \{\phi_1, \dots, \phi_m, \phi_\omega\}$ is a group of pairwise ε -equivalent factors.

$$\mathsf{conv}(\phi_1,\dots,\phi_m) := \left\{ \sum_{i=1}^m \omega_i \phi_i \;\middle|\; \omega_i \geq 0, \sum_{i=1}^m \omega_i = 1 \right\}$$

- $ightharpoonup \phi_{gm}(m{r}) := \sqrt[m]{\prod_{i=1}^m \phi_i(m{r})}$

$$\phi_i \in S_{n-1}^p$$

Theorem (Speller et al., 2025)

Let $G = \{\phi_1, \ldots, \phi_m\}$ denote a group of pairwise ε -equivalent factors and let $\phi_\omega(r) = \sum_{i=1}^m \omega_i \phi_i(r)$ be the weighted mean with weights $\omega_i \geq 0$ and $\sum_{i=1}^m \omega_i = 1$ for all assignments r. Then, $G^* = \{\phi_1, \ldots, \phi_m, \phi_\omega\}$ is a group of pairwise ε -equivalent factors.

$$\mathsf{conv}(\phi_1,\ldots,\phi_m) := \left\{ \sum_{i=1}^m \omega_i \phi_i \;\middle|\; \omega_i \geq 0, \sum_{i=1}^m \omega_i = 1 \right\}$$

$$\qquad \qquad \|\phi_{\omega}\|_{p} \in \left[\frac{1}{1+\varepsilon},1\right] \text{ or } \phi_{\omega} \in \overline{B_{1}^{p}}(0) \setminus B_{1/(1+\varepsilon)}^{p}(0) = \left\{\phi \in \mathbb{R}^{n}: \frac{1}{1+\varepsilon} \leq \|\phi\|_{p} \leq 1\right\}$$

Convex Extensions

$$G = \{\phi_1, \dots, \phi_m\}$$
 pairwise ε -equivalent

- Convex Supersets
 - ▶ All pairwise ε -equivalent convex supersets of G, contain conv (ϕ_1, \ldots, ϕ_m)
 - Non-unique extension of this set in every dimension ($=_{\varepsilon}$ not transitive)
 - For hierarchical ACP \to next compression level is build on maximal deviation d_{∞} to all ϕ_i

Convex Extensions

$$G = \{\phi_1, \dots, \phi_m\}$$
 pairwise ε -equivalent

- Convex Supersets
 - All pairwise ε -equivalent convex supersets of G, contain $conv(\phi_1, \dots, \phi_m)$
 - Non-unique extension of this set in every dimension ($=_{\varepsilon}$ not transitive)
 - For hierarchical ACP ightarrow next compression level is build on maximal deviation d_{∞} to all ϕ_i

- Finitely Generated Convex Cone?
 - ▶ Scale all factors \rightarrow Check ε -equivalence \rightarrow Choose representative
 - $\rightarrow \quad \phi_{\omega} \in \operatorname{conv}(\phi_1/\|\phi_1\|_p, \dots, \phi_m/\|\phi_m\|_p)$
 - ullet arepsilon-Equivalence is *not* closed under rescaling onto S_{n-1}^p (For given group $G\subset S_{n-1}^p$ of arepsilon-equivalent factors $o frac{\phi_\omega}{\|\phi_\omega\|_p}\in S_{n-1}^p$ is *not* necessarily pairwise arepsilon-equivalent to G)
 - ▶ Sequence of operations plays major role for sorting ε -equivalent groups

Definition (Cosine distance)

$$D_{\cos} : \mathbb{R}^{n}_{>0} \times \mathbb{R}^{n}_{>0} \to [0,1], \quad D_{\cos}(\phi_{1}, \phi_{2}) := 1 - \frac{\phi_{1} \cdot \phi_{2}}{||\phi_{1}||_{2} \cdot ||\phi_{2}||_{2}}$$

which is equal to $1 - \cos(\theta)$ for one $\theta \in [0, \pi]$.

Definition (Cosine distance)

$$D_{\cos} : \mathbb{R}^{n}_{>0} \times \mathbb{R}^{n}_{>0} \to [0,1], \quad D_{\cos}(\phi_{1}, \phi_{2}) := 1 - \frac{\phi_{1} \cdot \phi_{2}}{\|\phi_{1}\|_{2} \cdot \|\phi_{2}\|_{2}}$$

which is equal to $1 - \cos(\theta)$ for one $\theta \in [0, \pi]$.

▶ If ϕ_1 and ϕ_2 are *exchangeable*, then it holds $D_{\cos}(\phi_1, \phi_2) = 0$.

Definition (Cosine distance)

$$D_{\cos} : \mathbb{R}^{n}_{>0} \times \mathbb{R}^{n}_{>0} \to [0,1], \quad D_{\cos}(\phi_{1}, \phi_{2}) := 1 - \frac{\phi_{1} \cdot \phi_{2}}{\|\phi_{1}\|_{2} \cdot \|\phi_{2}\|_{2}}$$

which is equal to $1 - \cos(\theta)$ for one $\theta \in [0, \pi]$.

▶ If ϕ_1 and ϕ_2 are exchangeable, then it holds $D_{\cos}(\phi_1, \phi_2) = 0$.

$$\oint \phi_i \in S_{n-1}^p$$

Definition (Cosine distance)

$$D_{\cos} : \mathbb{R}^{n}_{>0} \times \mathbb{R}^{n}_{>0} \to [0,1], \quad D_{\cos}(\phi_{1}, \phi_{2}) := 1 - \frac{\phi_{1} \cdot \phi_{2}}{||\phi_{1}||_{2} \cdot ||\phi_{2}||_{2}}$$

which is equal to $1 - \cos(\theta)$ for one $\theta \in [0, \pi]$.

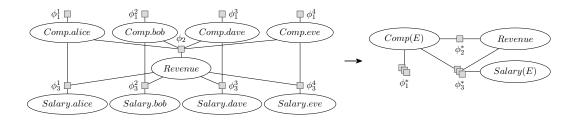
▶ If ϕ_1 and ϕ_2 are exchangeable, then it holds $D_{\cos}(\phi_1, \phi_2) = 0$.

$$\oint \phi_i \in S_{n-1}^p$$

- $2D_{\cos}(\phi_1, \phi_2) = ||\phi_1 \phi_2||_2$

Summary

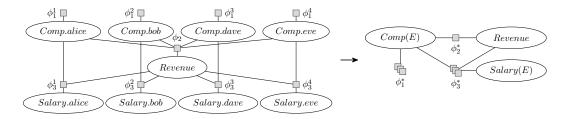
- Possible generalisation via choice of representative $\phi^* \in \mathsf{conv}(\phi_1, \dots, \phi_m)$
 - ▶ Theoretical guarantees for the change in query results still apply
 - lacktriangle Use of different loss functions to find optimal ϕ^*



Summary

- Possible generalisation via choice of representative $\phi^* \in \mathsf{conv}(\phi_1, \dots, \phi_m)$
 - ▶ Theoretical guarantees for the change in query results still apply
 - lacktriangle Use of different loss functions to find optimal ϕ^*
- \triangleright Choice of ε controls...

 - ightharpoonup ...the distance in \mathcal{L}^p
 - ightharpoonup ...the angle in \mathcal{L}^2 (controlling a convex cone)
 - ...a hierarchy of convex supersets containing each other



References

- Babak Ahmadi et al. (2013). »Exploiting Symmetries for Scaling Loopy Belief Propagation and Relational Training«. *Machine Learning* 92.1, pp. 91–132.
- Kristian Kersting et al. (2009). »Counting Belief Propagation «. UAI-09 Proc. of the 25th Conference on Uncertainty in Artificial Intelligence. AUAI Press, pp. 277–284.
- Malte Luttermann et al. (2024). »Colour Passing Revisited: Lifted Model Construction with Commutative Factors«. *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-2024)*. AAAI Press, pp. 20500–20507.
- Malte Luttermann et al. (2025). »Approximate Lifted Model Construction «. Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-2025). https://arxiv.org/abs/2504.20784.
- Jan Speller et al. (2025). »Compression versus Accuracy: A Hierarchy of Lifted Models «. https://arxiv.org/abs/2505.22288.