

Approximate Lifted Model Construction LJCAI 2025 – Montreal, Canada

<u>Malte Luttermann</u>¹, Jan Speller², Marcel Gehrke³, Tanya Braun², Ralf Möller³, and Mattis Hartwig¹

¹German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany
²Data Science Group, University of Münster, Germany
³Institute for Humanities-Centered Artificial Intelligence, University of Hamburg, Germany

August 19, 2025

Problem Setup

- ► Input: A factor graph *G*
- lacktriangle Output: A parametric factor graph with approximately equivalent semantics as G
 - ► With a minimal approximation error
 - ▶ With theoretical guarantees for the change in query results

- ► Assign colours to random variables according to their ranges and evidence
- ► Assign colours to factors according to their potential tables
- Pass colours around to detect symmetries in the graph

SalA	Rev	$\phi_1(SalA,Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$
high		φ_1	high	high	φ_1
high	low	$arphi_2$	high	low	φ_2
low	high	$arphi_3$	low	high	φ_3
low	low	$arphi_4$	low	low	φ_4

- ► Assign colours to random variables according to their ranges and evidence
- ► Assign colours to factors according to their potential tables
- ▶ Pass colours around to detect symmetries in the graph

SalA	Rev	$\phi_1(SalA,Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$
	high	φ_1		high	φ_1
high	low	$arphi_2$	high	low	φ_2
low	high	φ_3	low	high	φ_3
low	low	$arphi_4$	low	low	φ_4

- Assign colours to random variables according to their ranges and evidence
- ► Assign colours to factors according to their potential tables
- Pass colours around to detect symmetries in the graph

SalA	Rev	$\phi_1(SalA,Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$
high	high	φ_1	high	high	φ_1
high	low	$arphi_2$	high	low	φ_2
low	high	$arphi_3$	low	high	φ_3
low	low	$arphi_4$	low	low	$arphi_4$

- Assign colours to random variables according to their ranges and evidence
- ► Assign colours to factors according to their potential tables
- Pass colours around to detect symmetries in the graph

SalA	Rev	$\phi_1(SalA, Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$
high	high	φ_1	high	high	φ_1
high	low	$arphi_2$	high	low	$arphi_2$
low	high	$arphi_3$	low	high	φ_3
low	low	φ_4	low	low	φ_4

- Assign colours to random variables according to their ranges and evidence
- ► Assign colours to factors according to their potential tables
- ▶ Pass colours around to detect symmetries in the graph

SalA	Rev	$\phi_1(SalA, Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$
high	high	φ_1	high	high	φ_1
high	low	$arphi_2$	high	low	$arphi_2$
low	high	$arphi_3$	low	high	φ_3
low	low	φ_4	low	low	φ_4

- Assign colours to random variables according to their ranges and evidence
- ► Assign colours to factors according to their potential tables
- ▶ Pass colours around to detect symmetries in the graph

SalA	Rev	$\phi_1(SalA, Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$	Sal(E)	Rev	$\phi'_1(Sal(E), Rev)$
high	high	φ_1	high	high	φ_1	high	high	φ_1
high	low	$arphi_2$	high	low	φ_2	$_{ m high}$	low	φ_2
low	high	$arphi_3$	low	high	φ_3	low	high	φ_3
low	low	$arphi_4$	low	low	φ_4	low	low	φ_4

Limitation of the Advanced Colour Passing Algorithm

- ▶ Potentials of factors must be strictly equal for factors to receive the same colour
- Limits the applicability of ACP in practice
 - ▶ E.g., if potentials are estimated from data

SalA	Rev	$\phi_1(SalA, Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$	Sal(E)	Rev	$\phi_1'(Sal(E), Rev)$
high	high	φ_1	high	high	φ_1	high	high	φ_1
$_{ m high}$	low	$arphi_2$	high	low	$arphi_2$	high	low	$arphi_2$
low	high	$arphi_3$	low	high	φ_3	low	high	$arphi_3$
low	low	$arphi_4$	low	low	φ_4	low	low	$arphi_4$

Approximate Lifted Model Construction

▶ So far: Strict equality between potentials required

$$\blacktriangleright$$
 E.g., $\varphi_1 = \varphi_1$, $\varphi_2 = \varphi_2$, $\varphi_3 = \varphi_3$, $\varphi_4 = \varphi_4$

\overbrace{SalA}	\geq
\overbrace{Rev}	ϕ_1
\widehat{SalB}	$\int \phi_2$

SalA	Rev	$\phi_1(SalA,Rev)$
high	high	$arphi_1$
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	φ_1
$_{ m high}$	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

Approximate Lifted Model Construction

▶ Our goal: Allow for a small deviation between potentials for practical applicability

► E.g.,
$$\varphi_1 \approx \varphi_1'$$
, $\varphi_2 \approx \varphi_2'$, $\varphi_3 \approx \varphi_3'$, $\varphi_4 \approx \varphi_4'$

SalA	Rev	$\phi_1(SalA,Rev)$
high	high	$arphi_1$
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	$arphi_1'$
high	low	$arphi_2'$
low	high	$arphi_3'$
low	low	$arphi_4'$

Approximate Lifted Model Construction

▶ Our goal: Allow for a small deviation between potentials for practical applicability

► E.g.,
$$\varphi_1 \approx \varphi_1'$$
, $\varphi_2 \approx \varphi_2'$, $\varphi_3 \approx \varphi_3'$, $\varphi_4 \approx \varphi_4'$

$\bigcirc SalA$	SalA	Rev	$\phi_1(SalA, Rev)$
			, , ,
	high	high	$arphi_1$
$(Rev)^{\phi_1}$	$_{ m high}$	low	$arphi_2$
	low	high low	$arphi_3$
\overbrace{SalB} ϕ_2	low	low	$arphi_4$
Saib			

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	$arphi_1'$
high	low	$arphi_2'$
low	high	$arphi_3'$
low	low	φ_4'

▶ How much deviation should be allowed and what is the impact on query results?

ε -Equivalence

▶ Potentials $\varphi_1 \in \mathbb{R}^+$ and $\varphi_2 \in \mathbb{R}^+$ are ε -equivalent if

$$\begin{split} \varphi_1 \in [\varphi_2 \cdot (1-\varepsilon), \varphi_2 \cdot (1+\varepsilon)] \text{ and } \\ \varphi_2 \in [\varphi_1 \cdot (1-\varepsilon), \varphi_1 \cdot (1+\varepsilon)] \end{split}$$

- ▶ Factors $\phi_1(R_1, \ldots, R_n)$ and $\phi_2(R'_1, \ldots, R'_n)$ are ε -equivalent if all potentials in their potential tables are ε -equivalent
- ▶ E.g., for $\varepsilon = 0.1$, $\phi_1(SalA, Rev)$ and $\phi_2(SalB, Rev)$ are ε -equivalent:

SalA	Rev	$\phi_1(SalA, Rev)$	SalB	Rev	$\phi_2(SalB,Rev)$
high	high	0.81	high	high	0.84
$_{ m high}$	low	0.32	high	low	0.31
low	high	0.51	low	high	0.51
low	low	0.21	low	low	0.20

Grouping ε -Equivalent Factors

▶ A representative potential table is required to construct a lifted representation

SalA	Rev	$\phi_1(SalA, Rev)$
high	high	φ_1
$_{ m high}$	low	φ_2
low	high	φ_3
low	low	$ \varphi_4 $

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	φ_1'
$_{ m high}$	low	$arphi_2'$
low	high	$arphi_3'$
low	low	$arphi_4'$

Sal(E)	Rev	$\phi_1'(Sal(E), Rev)$
high	high	$arphi_1^*$
$_{ m high}$	low	$arphi_2^*$
low	high	$arphi_3^*$
low	low	$arphi_4^*$

Grouping ε -Equivalent Factors

A representative potential table is required to construct a lifted representation

How to choose φ_i*?

Minimisation of the Approximation Error

• Choose φ_i^* as the row-wise arithmetic mean of the potentials

SalA	Rev	$\phi_1(SalA, Rev)$
high	high	$arphi_1$
high	low	$arphi_2$
low	high	$arphi_3$
low	low	$arphi_4$
	'	•

SalB	Rev	$\phi_2(SalB,Rev)$
high	high	$arphi_1'$
high	low	$arphi_2'$
low	high	$arphi_3^{'}$
low	low	$arphi_4^{\prime}$
IOW	IOW	$arphi_4$

	•	
Sal(E)	Rev	$\phi_1'(Sal(E), Rev)$
high	high	$\varphi_1^* = \left(\varphi_1 + \varphi_1'\right) / 2$
high	low	$\varphi_2^* = \left(\varphi_2 + \varphi_2'\right) / 2$
low	high	$\varphi_3^* = \left(\varphi_3 + \varphi_3'\right) / 2$
low	low	$\varphi_4^* = \left(\varphi_4 + \varphi_4'\right) / 2$

Bounding the Change in Query Results

- ▶ Bounds for m = 10 (left), m = 100 (middle), and m = 1000 (right) factors
- ▶ Dashed line: $\varepsilon = 0.01$, solid line: $\varepsilon = 0.001$
- \triangleright x-axes depict the original probability p, y-axes reflect the bound on the change in p

Bounds apply to arbitrary queries and factor graphs

Experiments

- \triangleright ε -ACP is a generalisation of ACP that assigns identical colours to groups of ε -equivalent factors (instead of equivalent factors)
- ▶ Left: Comparison of run times for lifted inference
- ightharpoonup Right: Quotients of query results p' in the modified factor graph and p in the original factor graph

Summary

- Limited practical applicability of ACP solved
- ightharpoonup Hyperparameter ε to control the trade-off between exactness and compactness
- ► Theoretical guarantees for the change in query results

SalA	Rev	$\phi_1(SalA, Rev)$	SalB	Rev	$\phi_2(SalB, Rev)$	Sal(E)	Rev	$\phi_1'(Sal(E), Rev)$
high	high	φ_1	high	high	φ_1'	high	high	$(\varphi_1+\varphi_1')/2$
high	low	$arphi_2$	high	low	φ_2'	$_{ m high}$	low	$(\varphi_2 + \varphi_2') / 2$
low	high	$arphi_3$	low	high	φ_3'	low	high	$(\varphi_3 + \varphi_3') / 2$
low	low	$arphi_4$	low	low	φ_4'	low	low	$\left(\varphi_4+\varphi_4'\right)/2$

References

- Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan (2013). »Exploiting Symmetries for Scaling Loopy Belief Propagation and Relational Training«. *Machine Learning* 92, pp. 91–132.
- Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan (2009). »Counting Belief Propagation«. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI-2009). AUAI Press, pp. 277–284.
- Malte Luttermann, Tanya Braun, Ralf Möller, and Marcel Gehrke (2024). »Colour Passing Revisited: Lifted Model Construction with Commutative Factors«. Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-2024). AAAI Press, pp. 20500–20507.