
Efficient Enumeration of Markov Equivalent DAGs
MarcelWienöbst Malte Luttermann Max Bannach Maciej Liśkiewicz

AAAI’23Washington D.C.

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 1 / 8



Motivation and Problem Setup

Causal
Structure

a b c

d

Observations

a b c

d

a b c

d

MEC

Problem
Enumerate all directed acyclic graphs (DAGs) in
aMarkov equivalence class (MEC) efficiently.

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 2 / 8



Motivation and Problem Setup

Causal
Structure

a b c

d

Observations

a b c

d

a b c

d

MEC

Without further assumptions, the causal
structure can only be recovered up to
Markov equivalence.

Problem
Enumerate all directed acyclic graphs (DAGs) in
aMarkov equivalence class (MEC) efficiently.

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 2 / 8



Motivation and Problem Setup

Causal
Structure

a b c

d

Observations

a b c

d

a b c

d

MEC

Without further assumptions, the causal
structure can only be recovered up to
Markov equivalence.

Problem
Enumerate all directed acyclic graphs (DAGs) in
aMarkov equivalence class (MEC) efficiently.

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 2 / 8



MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 3 / 8



Formal Problem and its History

Input: Representation of an MEC as CPDAG.

Task: List all DAGs in MEC one-by-one.

Objective: Small delay between successive outputs.

Approach Delay

Meek ’95 Meek-Rule Recursion O(m ·meek(n,m))
Chickering ’95 Transformational Characterization O(m3)
This work Max. Cardinality Search (MCS) O(n+m)

a b c
d

CPDAG

a b c
d

a b c
d

a b c
d

MEC

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 4 / 8



Formal Problem and its History

Input: Representation of an MEC as CPDAG.

Task: List all DAGs in MEC one-by-one.

Objective: Small delay between successive outputs.

Approach Delay

Meek ’95 Meek-Rule Recursion O(m ·meek(n,m))
Chickering ’95 Transformational Characterization O(m3)
This work Max. Cardinality Search (MCS) O(n+m)

a b c
d

CPDAG

a b c
d

a b c
d

a b c
d

MEC

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 4 / 8



Formal Problem and its History

Input: Representation of an MEC as CPDAG.

Task: List all DAGs in MEC one-by-one.

Objective: Small delay between successive outputs.

Approach Delay

Meek ’95 Meek-Rule Recursion O(m ·meek(n,m))
Chickering ’95 Transformational Characterization O(m3)
This work Max. Cardinality Search (MCS) O(n+m)

a b c
d

CPDAG

a b c
d

a b c
d

a b c
d

MEC

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 4 / 8



Formal Problem and its History

Input: Representation of an MEC as CPDAG.

Task: List all DAGs in MEC one-by-one.

Objective: Small delay between successive outputs.

Approach Delay

Meek ’95 Meek-Rule Recursion O(m ·meek(n,m))
Chickering ’95 Transformational Characterization O(m3)
This work Max. Cardinality Search (MCS) O(n+m)

a b c
d

CPDAG

a b c
d

a b c
d

a b c
d

MEC

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 4 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

a b c
d

CPDAG

a b c
d
3

a b c
d
7

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

CPDAG

a

b

c

d

e

f

g

h

i

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (i)

a

b

c

d

e

f

g

h

i

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:
a b c d e f g h i

0 0 0 0 0 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 1 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:
a b c d e f g h i

1 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 1 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 1 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Prerequisite: Extending a CPDAG

Input: Representation of an MEC as CPDAG.

Task: Compute any DAG in the MEC.

Algorithm: Folklore O(n+m) approach.
(i) Discard all directed edges.
(ii) Find acyclic orientation without

v-structure using MCS (traverse
vertices by highest number of
visited neighbors).

Step (ii)

a

b

c

d

e

f

g

h

i

Number of visited neighbors:
a b c d e f g h i

1 1 0 2 1 0 1 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 5 / 8



Linear-Time Enumeration Algorithm

Visiting c first:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 1 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 6 / 8



Linear-Time Enumeration Algorithm

Visiting e after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 2 1 0 0 0 0

Visiting d after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 1 2 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 6 / 8



Linear-Time Enumeration Algorithm

Visiting e after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 2 1 0 0 0 0

Visiting b after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 1 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 6 / 8



Linear-Time Enumeration Algorithm

Visiting e after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 2 1 0 0 0 0

Visiting b after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 6 / 8



Linear-Time Enumeration Algorithm

Visiting e after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 0 0 0

Visiting b after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

1 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 6 / 8



Linear-Time Enumeration Algorithm

Visiting e after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:
a b c d e f g h i

1 1 0 2 1 0 0 0 0

Visiting b after c:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:
a b c d e f g h i

1 1 0 2 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 6 / 8



Linear-Time Enumeration Algorithm

Lemma
If vertices x and y are…

…connected: choosing either vertex first results in disjoint
extensions.

…unconnected: any extension produced by choosing x
first, can also be produced by choosing a vertex from the
connected component of y first.

Theorem
AnMEC can be enumerated with delay O(n+m).

For background knowledge, an O(n3) initialization step is
needed, subsequent delay is O(n+m).

Visiting c first:

a

b

c

d

e

f

g

h

i

Number of visited neighbors:

a b c d e f g h i

0 1 0 1 1 0 0 0 0

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 6 / 8



Experimental Evaluation

this work

meek

chickering

Delay in ms

1
2
3
4
5
6
7
8
9

10
11
12

16 32 64 128 256 512 1024
Number of Vertices

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 7 / 8



Outlook

Theorem (Another structural result)
Every Markov equivalence class can be
enumerated such that successive DAGs have
structural hamming distance (SHD)≤ 3.

Open Problem: Enumeration of Markov
equivalentMAGs (causal models under
latent confounding).

Thanks for your attention!

Code and Preprint available on Github:
github.com/mwien/fastmecenumeration

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 8 / 8

github.com/mwien/fastmecenumeration


Outlook

Theorem (Another structural result)
Every Markov equivalence class can be
enumerated such that successive DAGs have
structural hamming distance (SHD)≤ 3.

Open Problem: Enumeration of Markov
equivalentMAGs (causal models under
latent confounding).

Thanks for your attention!

Code and Preprint available on Github:
github.com/mwien/fastmecenumeration

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 8 / 8

github.com/mwien/fastmecenumeration


Outlook

Theorem (Another structural result)
Every Markov equivalence class can be
enumerated such that successive DAGs have
structural hamming distance (SHD)≤ 3.

Open Problem: Enumeration of Markov
equivalentMAGs (causal models under
latent confounding).

Thanks for your attention!

Code and Preprint available on Github:
github.com/mwien/fastmecenumeration

MarcelWienöbst, Malte Luttermann, Max Bannach, Maciej Liśkiewicz AAAI’23Washington D.C. 8 / 8

github.com/mwien/fastmecenumeration

