

Approximate Lifted Model Construction

Malte Luttermann, Jan Speller, Marcel Gehrke, Tanya Braun, Ralf Möller, and Mattis Hartwig

1. Motivation and Problem Setup

- ► Factor graphs compactly encode a probability distribution
- ightharpoonup Semantics of a factor graph G over a set of factors Φ :

- Parametric factor graphs introduce logical variables to represent groups of random variables
- Parametric factor graphs enable lifted inference (idea: exploit indistinguishability of objects using exponentiation)

Problem Setup

Input: A factor graph *G*

Output: A parametric factor graph entailing approximately equivalent semantics as *G*

- With a minimal approximation error
- With theoretical guarantees for query results

2. Previous Work: Advanced Colour Passing (ACP)

- Assign colours to random variables according to their ranges and evidence
- Assign colours to factors according to their potential tables
- ► Pass colours around to detect symmetries in the graph

- Limitation: Potentials of factors must be strictly equal
 - \blacktriangleright Solution: ε -equivalence instead of strict equivalence

3. ε -Equivalence

- Potentials $\varphi_1 \in \mathbb{R}^+$ and $\varphi_2 \in \mathbb{R}^+$ are ε -equivalent if $\varphi_1 \in [\varphi_2 \cdot (1-\varepsilon), \varphi_2 \cdot (1+\varepsilon)]$ and $\varphi_2 \in [\varphi_1 \cdot (1-\varepsilon), \varphi_1 \cdot (1+\varepsilon)]$
- Factors ϕ_1 and ϕ_2 are ε -equivalent if all potentials in their potential tables are pairwise ε -equivalent
- For example, ϕ_1 and ϕ_2 are ε -equivalent for $\varepsilon = 0.1$:

A	В	$\phi_1(A,B)$	C	В	$\phi_2(C,B)$
true	true	0.81	true	true	0.84
true	false	0.32	true	false	0.31
false	true	0.51	false	true	0.51
false	false	0.21	false	false	0.20

► Challenge: To exploit exponentiation in lifted inference, potential tables of factors in a group must be identical

4. The ε -Advanced Colour Passing (ε -ACP) Algorithm

 ε -ACP is a generalisation of ACP that proceeds in three phases:

- (i) Compute groups of pairwise ε -equivalent factors
- (ii) Assign colours to factors according to the previously computed groups and run the colour passing procedure from ACP
- (iii) Ensure identical potentials in resulting groups of factors
 - ► Goal: Apply smallest possible change to potential tables
 - Formally: Given a group of pairwise ε -equivalent factors $\mathbf{G} = \{\phi_1, \dots, \phi_k\}$, compute a single factor ϕ^* that fulfils

$$\phi^* = \operatorname*{arg\,min} \sum_{\phi_i \in \mathbf{G}} Err(\phi_i, \phi_j),$$

where $Err(\phi_i, \phi_j)$ is the sum of squared deviations between the potentials of ϕ_i and ϕ_i :

$$Err(\phi_i, \phi_j) = \sum_{(r_1, ..., r_n)} \left(\phi_i(r_1, ..., r_n) - \phi_j(r_1, ..., r_n) \right)^2$$

- ightharpoonup Ensure identical potentials by replacing all factors in \boldsymbol{G} by ϕ^*
- Theorem: The optimal choice for ϕ^* is the arithmetic mean

$$\phi^*(r_1,\ldots,r_n) = \frac{1}{k} \sum_{i=1}^k \phi_i(r_1,\ldots,r_n).$$

ightharpoonup Corollary: If $\varepsilon = 0$, ε -ACP is equivalent to ACP.

5. Bounding the Change in Query Results

Theorem: With $p = P_M(R = r \mid \mathbf{e})$ being a query in any factor graph M and $p' = P_{M'}(R = r \mid \mathbf{e})$ being a query in the output M' of ε -ACP when run on M, the change in the query result is bounded by

$$\frac{pe^{-\delta}}{p(e^{-\delta}-1)+1} \le p' \le \frac{pe^{\delta}}{p(e^{\delta}-1)+1}$$

where $\delta \leq [\ln (1+\varepsilon)^m] - [\ln (1-\varepsilon)^m]$ with m being the number of factors in M.

► Graphical illustration of the bound for m = 10 (left), m = 100 (middle), and m = 1000 (right) factors:

- \triangleright x-axes: Original probability p, y-axes: Bound on the change in p
- ▶ Dashed (green) line: ε = 0.01, solid (yellow) line: ε = 0.001
- ightharpoonup Theorem: The optimal bound for δ is given by

$$\delta \leq \ln \left(\frac{\left(1 + \frac{m - 1}{m} \varepsilon\right) \left(1 + \varepsilon\right)}{1 + \frac{1}{m} \varepsilon} \right)^{m}$$

Bounds apply to arbitrary queries and factor graphs

6. Experiments

- ► Investigate the trade-off between exactness and compactness
- Left: Comparison of run times for lifted probabilistic inference
- Right: Quotients of query results p' in the resulting parametric factor graph and their ground truth p in the original factor graph

