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1. Problem Setting

Input: A partially directed acyclic graph (PDAG) G.
Output: Any consistent DAG extension of G or⊥ if no such exten-

sion exists.
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Application: Maximal orientation (applying the four Meek rules ex-
haustively to a PDAG) by (i) extending the PDAG into
a DAG and (ii) computing the maximal orientation ef-
ficiently utilizing the topological ordering of the DAG.
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Maximal orientations are an important building block in causal
discovery, e. g., in the final step of the PC algorithm.
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2. PreviousWork

Algorithm Complexity Advantage

Dor and Tarsi (1992) (DT) O(n4) Less practical overhead
Wienöbst et al. (2021) (WBL) O(n3) Less repeated calculations

Our goal: Combine the advantages of both algorithms to obtain
an efficient algorithm for practical applications.

3. The Dor-Tarsi Algorithm

Prerequisite: Concept of a potential-sink, that is, a vertex v
▶ without outgoing edges and
▶ all vertices x with v − x being adjacent to all other neighbors of v.

Dor-Tarsi Algorithm to extend a PDAG G:

1. D ← copy of G
2. Repeat n times:
(i) v ← any potential-sink in G; if no potential-sink exists return⊥
(ii) Remove v and its incident edges from G
(iii) Direct all undirected edges incident to v towards v in D
3. Return D

4. Two New Simple Algorithms for Extendability

Building on the Dor-Tarsi (DT) algorithm with simple modifications:
(i) DT with heuristic (DTH): Iterate over vertices in order of

increasing degree when searching for a potential-sink
(ii) Heuristic with additional caching and improved time complexity

expected in O(n3) (DTIC)
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PDAG G #Adj. tests for the first potential-sink (ps)

DT:
b ?∼ c, b ?∼ d, b ?∼ e, c ?∼ d, c ?∼ e
a ?∼ c, a ?∼ d, a ?∼ e, c ?∼ d, c ?∼ e
a ?∼ b, a ?∼ d, b ?∼ d

DTH: a ?∼ b

ps(a) 7
ps(b) 7
ps(c) 3

ps(e) 3

5. Example Run of the New Algorithm

Input graph ps(a) ps(c) ps(b)

Current
state

a b

c d

a b

c d

b

c d

b

d

Result
a b

c d

a b

c d

a b

c d

a b

c d

6. Evaluation of Extension Algorithms
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7. Application to Maximal Orientations

▶ DIRECT-MEEK: Apply Meek’s rules directly in a while-loop.
▶ CE-MEEK: Compute a consistent extension, find the corresponding
CPDAG, and then apply Meek’s rules in a single iteration.
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