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Abstract Failure mode and effects analysis (FMEA)

is a systematic approach to identify and analyse po-

tential failures and their effects in a system or pro-

cess. The FMEA approach, however, requires domain

experts to manually analyse the FMEA model to de-

rive risk-reducing actions that should be applied. In this

paper, we provide a formal framework to allow for au-

tomatic planning and acting in FMEA models. More

specifically, we cast the FMEA model into a Markov

decision process which can then be solved by existing

solvers. We show that the FMEA approach can not only

be used to support medical experts during the mod-

elling process but also to automatically derive optimal

therapies for the treatment of patients.
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1 Introduction

Failure mode and effects analysis (FMEA) is a widely

used framework to assess the risk of a system or pro-

cess. In particular, FMEA breaks down a system into a

hierarchy of components, their functionalities, and po-

tential failures to allow for a systematic analysis of each

component or function and their potential failures [24].

Failures are then prioritised according to their potential

harm, that is, their severity, their likelihood of occur-

rence, and their detectability [8]. Based on the priorities

of the failures, countermeasures against the most criti-

cal failures can be developed [29]. The FMEA approach

is an industry standard in the engineering and the man-

ufacturing industry. The application of FMEA helps to

improve the design of the final product and to detect

and reduce the risk of failure [8,15]. FMEA is already

applied during the manufacturing process of medical

devices [14] to increase their reliability and helps to

satisfy the quality requirements of particular medical

processes such as administering drugs to patients [1].

Our goal in this paper is to automate planning and

acting in FMEA models. In particular, we apply FMEA

to the medical domain to automatically derive optimal

therapies for individual patients.

Although there is a lot of work on using formal

models for diagnosis and treatment of patients, there

are, to the best of our knowledge, no applications of

FMEA to model the underlying cause-effect relation-

ships in the human body used in the decision making

process of medical experts for diagnosis and treatment.

As the human body is without doubt a highly com-

plex system and all of these formal models must be

created manually by domain experts, the FMEA ap-

proach has the potential to support medical experts

during the modelling process of cause-effect relation-
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ships in the human body. FMEA ensures compliance

with the model hierarchy, thereby yielding a structured

model approach that helps to deal with the complex-

ity of the model. Furthermore, as the FMEA approach

in its current form requires a lot of manual work from

domain experts even after the FMEA model has been

constructed because an FMEA model does not provide

any automated reasoning capabilities to derive coun-

termeasures (i.e., actions) against potential failures, we

propose to cast the FMEA model into a Markov deci-

sion process (MDP). An MDP provides a mathematical

framework to model sequential decision problems in a

fully observable, stochastic environment. In particular,

we show how an arbitrary FMEA model can be trans-

formed into an MDP such that existing MDP solvers

can be applied to automatically derive optimal poli-

cies, thereby allowing us to use the transformation from

FMEA model to MDP to fully automate the computa-

tion of possible countermeasures for potential failures

in the FMEA model. Further, we demonstrate that a

policy obtained from the MDP solver can be used to

obtain an optimal therapy for an individual patient.

Related work. The FMEA approach is widely applied in

various industries such as the automotive industry [22],

the aerospace industry [31], and manufacturing indus-

tries in general [19]. FMEA supports companies dur-

ing the design phase of their product and is especially

prevalent during the design phase of products with spe-

cial reliability requirements in safety-critical applica-

tion environments. In the medical (healthcare) domain,

the FMEA approach is commonly applied during the

design phase of medical devices [20] as these devices are

often used in hospitals and other health-critical envi-

ronments that must fulfil extraordinary safety require-

ments. The administration of drugs to patients in a hos-

pital as well as the evaluation of an automated treat-

ment planning tool for radiation are other safety-critical

processes in the medical domain where the FMEA ap-

proach is already being used [1,13]. However, to the

best of our knowledge, the FMEA approach is not yet

applied to model the decision-making process of a med-

ical expert for diagnosis and treatment based on the

cause-effect relationships in the human body. All of the

aforementioned industries rely on manual work of do-

main experts to not only construct the FMEA model

but also to use it to derive actions serving as counter-

measures to the potential failures.

Decision support systems (DSSs) are approved by

many practitioners in the clinical routine for their sup-

port in finding the best action while including a growing

amount of information and clinical data (“information

overload”) [2,5,21,25]. If the standard guidelines are

integrated within a DSS, the outcome is improved [18,

21]. Examples of DSS applications, for instance within

the mechanical ventilation domain, are the calculation

of initial ventilation parameters [12,27], the construc-

tion of a weaning protocol for children [9], or the ven-

tilation of patients with acute respiratory distress syn-

drome [6]. Nevertheless, DSSs often have a very spe-

cific and limited use case wherefore each application

requires an individual DSS to be elaborated and im-

plemented. In general, there are plenty of works using

various mathematical frameworks to establish medical

decision support [28]—for example, partially observable

MDPs (a generalisation of MDPs) are already employed

to support in diagnosis and treatment [3,10,32].

Our contributions. We first extend the standard def-

inition of an FMEA model by adding variables (pa-

rameters) to functions. The variables and their qualita-

tive relationships among each other allow us to define

a formal semantics of failures and actions in an FMEA

model, i.e., failures indicate that the value of a variable

is outside of its normal range and an action restricts

the set of possible values for the variables. Having de-

fined a formal semantics for an FMEA model, we next

show how such a model can be transformed into an

MDP such that all transition probabilities and rewards

can be directly derived from the FMEA model. To ob-

tain the possible successor states in the MDP, we apply

qualitative causal reasoning in the FMEA model. The

MDP can then be solved using existing MDP solvers

to obtain an optimal policy, which maps each possible

state of the system to the best possible action for that

particular state. We present an algorithm to automati-

cally derive the best possible therapy according to the
initial FMEA model for a particular patient using the

optimal policy obtained by solving the MDP.

Structure of this paper. The remaining part of this pa-

per is structured as follows. Section 2 introduces the

necessary background information for the main part of

this paper. We first define FMEA models and then in-

troduce MDPs as a mathematical framework for mod-

elling sequential decision problems in a fully observable,

stochastic environment. Afterwards, in Section 3, we

show how an FMEA model can be transformed into an

MDP which can then be used for automated planning

and acting in an FMEA model. We introduce qualita-

tive causal reasoning to obtain an algorithm that com-

putes the possible successor states after applying an

action in the MDP. Section 4 introduces an algorithm

to compute the best possible therapy for a given pa-

tient according to a given FMEA model. Finally, we

discuss applications and limitations of our approach in

Section 5 before we conclude this paper in Section 6.
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2 Preliminaries

In this section, we introduce the necessary background

information for the remainder of this paper. We begin

by formally defining the syntax of an FMEA model,

which we then extend by adding variables to the FMEA

model to obtain an extended FMEA model for which

we can define a formal semantics. Afterwards, we de-

fine MDPs as a framework to model sequential decision

problems in a fully observable, stochastic environment.

2.1 Failure Mode and Effects Analysis

FMEA is a systematic approach to identify and anal-

yse potential failures in a system or process [24]. During

the FMEA process, the system is decomposed into its

components and functions and for each function, the

possible failures are identified. Every failure is assigned

its potential severity, its likelihood of occurrence, and

its detectability, which are then combined into a risk

priority number to assess the risk of the failure. To be

able to apply the FMEA approach to the medical do-

main to automatically derive therapies for particular

patients, we begin by defining an FMEA model.

Definition 1 (FMEA Model) An FMEA model is

defined as a tuple F = (C,F,E,A,C2C,F2F,E2E,

C2F, F2E,A2E,RP,AP ), where

– C is a finite set of components,

– F is a finite set of functions,

– E is a finite set of failures,

– A is a finite set of actions,

– C2C ⊆ C × C is the component hierarchy,

– F2F ⊆ F × F is the function hierarchy,

– E2E ⊆ E × E is the failure hierarchy,

– C2F ⊆ C × F assigns functions to components,

– F2E ⊆ F × E assigns failures to functions,

– A2E ⊆ A× E2E assigns actions to failure pairs,

– RP ⊆ E × {1, . . . , 10} × {1, . . . , 10} × {1, . . . , 10}
assigns each failure a severity, occurrence, and de-

tectability value, and

– AP ⊆ A × {d, p} specifies the type of each action

(“d” for detective or “p” for preventive).

Note that in its current form, an FMEA model is only

used by domain experts when thinking about potential

risks of a system or process, i.e., the model itself does

not “do” anything except for being visually displayed in

some kind of graphical user interface. The hierarchy of

components, functions, and failures, induced by C2C,

F2F , and E2E, respectively, is constrained to form

a connected directed tree (polytree), i.e., a directed

acyclic graph (DAG) where any two vertices are con-

nected by exactly one path when replacing the directed

edges by undirected edges. Additionally, each compo-

nent is restricted to be a sub-component of at most

one other component but it is allowed for a component

to have multiple sub-components (analogously for func-

tions and failures)—that is, C2C, F2F , and E2E are

left-functional (1:N) relations. Further, the relations

C2F , F2E, and A2E are right-total (N :1), meaning

that each function is attached to exactly one component

in C2F , each failure is attached to exactly one function

in F2E, and each action is attached to exactly one pair

of failure cause and failure effect in A2E. Note that the

other way around, there is no restriction, e.g., every

component can have arbitrarily many (including zero)

functions attached to it. In general, the idea is that each

component supplies one or more functionalities (func-

tions) and each function might go wrong in one or more

ways (failures). Actions are used as a remedy to deal

with failures (i.e., functions going wrong). The first en-

try in each tuple in RP serves as a key such that there

is exactly one tuple contained in RP for each failure

e ∈ E, assigning risk parameters (severity, occurrence,

and detectability) to e. By sev(e), occ(e), and det(e)

we denote the severity, occurrence, and detectability of

e, respectively. We refer to the causes of a failure e by

causes(e) = {e′ ∈ E | (e′, e) ∈ E2E}, and denote its

effects by effects(e) = {e′ ∈ E | (e, e′) ∈ E2E}. Anal-

ogously to RP , there is exactly one tuple contained in

AP for each action a ∈ A, assigning a type (“d” for

detective or “p” for preventive) to a.

Example 1 (FMEA Model) Consider the FMEA model

illustrated in Fig. 1. There are two components “Pe-

rialveolar interstitium” (denoted as c1) and “Respira-

tory system” (c2), and the arrow c1 → c2 indicates that
c1 is a sub-component of c2 (analogously, f1 is a sub-

function of f2 and e1 is a cause for e2). More specifically,

the set of components is given by C = {c1, c2}, the set

of functions is given by F = {f1, f2}, the set of fail-

ures is given by E = {e1, e2}, and the set of actions is

given by A = {d1, p1}. The hierarchies for components,

functions, and failures are given by C2C = {(c1, c2)},
F2F = {(f1, f2)}, and E2E = {(e1, e2)}, respectively.
The remaining relations are given by C2F = {(c1, f1),
(c2, f2)}, F2E = {(f1, e1), (f2, e2)}, and A2E = {(d1,
(e1, e2)), (p1, (e1, e2))}. Finally, the risk parameters are

given by RP = {(e1, 5, 4, 9), (e2, 7, 5, 9)} and the action

parameters are given by AP = {(d1, d), (p1, p)}.

As the FMEA model in its current form is not able to do

anything, we next extend an FMEA model by adding

variables (parameters) to functions and afterwards de-

fine the semantics of the extended FMEA model.

Definition 2 (Extended FMEA Model) An ex-

tended FMEA model is defined as a tuple F = (C,F,E,



4 Luttermann, Baake, Bouchagiar, Gebel, Grüning, Manikwadura, Schollemann, Teifke, Rostalski, Möller

c1

Perialveolar

interstitium

c2

Respiratory

system

f1

Keeping interstitial fluid

volume physiological

f2

Gas

exchange

e1

Interstitial

pulmonary edema

e2

Impaired

gas exchange

S:5, O:4, D:9

S:7, O:5, D:9

d1

Lung

ultrasound

p1

Negative

fluid balance

Fig. 1: An example for an FMEA model. The compo-

nents C are given by the circles, the functions F by the

rectangles, the failures E by the triangles, and the ac-

tions A by the pentagons. The hierarchy relations and

assignment relations are indicated by the edges between

the components, functions, failures, and actions, respec-

tively. The name of the actions indicate the action pa-

rameters AP (“d” for detective and “p” for preventive)

and the risk parameters RP are given by the S, O, and

D values next to the failures.

A,C2C,F2F,E2E,C2F, F2E,A2E,RP,AP, pre, post,

V, F2V,G), where C, F , E, A, C2C, F2F , E2E, C2F ,

F2E, A2E, RP , and AP form an FMEA model accord-

ing to Definition 1,

– pre assigns preconditions in form of Boolean expres-

sions to actions,

– post assigns postconditions in form of Boolean ex-

pressions to actions,

– V is a finite set of variables,

– F2V ⊆ F × V assigns variables to functions, and

– G = (V,E′) is a directed graph that encodes quali-

tative relationships between the variables in V .

An action a ∈ A is called applicable in state s if s

satisfies the preconditions of a. Sometimes, an action

a might invoke side effects which are captured by the

postconditions of a. The relation F2V is left-total (1:N),

meaning that each variable is attached to exactly one

function. We require each function to have at least one

variable attached to it but there is no limit of vari-

ables being attached to the same function. The idea be-

hind adding variables to functions is that each function

f(v1, . . . , vm) = (v′1, . . . , v
′
k) produces an output value

for each variable v′1, . . . , v
′
k (k ≥ 1) attached to f . The

purpose of variables is that functions are characterised

by the variables attached to them, allowing us to define

a formal semantics for failures and actions. A function

f is not required to take any variable as an input (i.e.,

m = 0 is allowed). If there are input variables v1, . . . , vm
for a function f , v1, . . . , vm are outputs of sub-functions

of f . Moreover, the associated graph G = (V,E′) mod-

els the qualitative relationships between all variables in

V . In particular, E′ ⊆ V × V × {+,−, ?} is a set of

labelled edges, that is, there is an edge u
ℓ→ v in G

if (u, v, ℓ) ∈ E′. An edge u
+→ v encodes that increas-

ing u will yield an increase of v, u
−→ v means that

increasing u will yield a decrease of v, and u
?→ v en-

tails that the effect of u on v is unknown. If a label ℓ is

irrelevant in a specific context, we omit it and simply

write u → v instead of u
ℓ→ v. Vertices that are con-

nected by an edge are called adjacent and are neigh-

bours of each other. Pa(v) denotes the set of parents

of a variable v, i.e., Pa(v) = {u | ∃ℓ : (u, v, ℓ) ∈ E′}
and the children of v are given by Ch(v) = {u | ∃ℓ :

(v, u, ℓ) ∈ E′}. By range(v) we denote the set of pos-

sible values a variable v ∈ V can take. For simplicity,

we assume that range(v) ⊆ {tooLow,normal, tooHigh}
and normal ∈ range(v) for all variables v throughout

this paper, i.e., the value of each variable can either be

in its normal range or deviate from its normal range in

both directions. Consequently, each failure e ∈ E has

either the form e := left critical(vi) (i.e., implying that

vi = tooLow) or e := right critical(vi) (i.e., implying

that vi = tooHigh), where vi ∈ V is a variable attached

to the function to which e is attached. For example, if

there is a variable vi called “body temperature” and

a failure e := right critical(vi) (fever), then vi can ei-

ther be assigned the value normal or tooHigh, while

vi = tooHigh triggers the failure e. However, different

ranges (and hence different failure semantics) are also

possible and do not affect our approach to automate

planning and acting in an FMEA model.

Example 2 (Extended FMEA Model) Take a look at the

extended FMEA model depicted in Fig. 2 which builds

on the FMEA model from Fig. 1. There are now vari-

ables V = {v1, v2} attached to the functions f1 and f2,

respectively. In particular, the assignments of variables

to functions are given by F2V = {(f1, v1), (f2, v2)}.
The qualitative relationships between the variables in

V are encoded by the graph G = (V, {(v1, v2,−)}). To
apply p1, there is a precondition that an interstitial

pulmonary edema must be detected first, i.e., pre =

{(p1, v1 = tooHigh)}. There are no side effects (post-

conditions) for both of the actions, that is, post = ∅.
The model states that too much interstitial fluid vol-

ume results in an interstitial pulmonary edema, i.e.,

e1 = right critical(v1), and too little diffusing capac-

ity of the lung impairs the gas exchange, i.e., e2 =

left critical(v2). The edge v1
−→ v2 implies that if the in-

terstitial fluid volume is too high, the diffusing capacity

of the lung will eventually become too low.

From now on, we focus on extended FMEA models and

simply write FMEA model instead of extended FMEA
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c1

Perialveolar

interstitium

c2

Respiratory

system

f1

Keeping interstitial fluid

volume physiological

f2

Gas

exchange

v1
Interstitial

fluid volume

v2
Diffusing

capacity of the lung

e1

Interstitial

pulmonary edema

e2

Impaired

gas exchange

S:5, O:4, D:9

S:7, O:5, D:9

d1

Lung

ultrasound

p1

Negative

fluid balance

−

Fig. 2: An example for an extended FMEA model build-

ing on the FMEAmodel illustrated in Fig. 1. Now, there

is a variable attached to each function in the model and

the qualitative relationship between the two variables

is encoded by the labelled edge between them.

model to refer to an FMEA model as defined in Def-

inition 2. Next, we define the semantics of an FMEA

model whose goal is to assess the risk of a system. It

is important to differentiate between the risk at class

level (e.g., the risk of the human body itself) and the

risk at instance level (e.g., the risk of a specific human

individual). At class level, we are interested in reducing

the risk of the system by changing the model itself, e.g.,

by adding actions to it. For example, if a system con-

tains a severe failure that cannot be detected at all, the

total risk of the system decreases as soon as a detection

action is added to the model to make that failure de-

tectable. The semantics of an FMEA model F at class

level can therefore be defined as

risk(F) = max
e∈E

ϕ(sev(e), occ(e),det(e)),

where ϕ : {1, . . . , 10} × {1, . . . , 10} × {1, . . . , 10} →
{green, orange, red} is a total function (i.e., ϕ is defined

for all possible combinations of severity, occurrence, and

detectability values) mapping the severity, occurrence,

and detectability of a failure to a risk value for that fail-

ure. We require {green, orange, red} to be an ordered set

(given in ascending order), i.e., max{green, orange} =

orange and max{orange, red} = red. The risk of an

FMEA model at class level is therefore the risk of the

most critical failure in the model. Other definitions for

the semantics of an FMEA model are possible as well.

For the remaining part of this paper, we focus on

assessing the risk of an FMEA model at instance level.

At instance level, we are interested in determining a

sequence of actions that are actually executed to re-

duce the risk of a particular instance. For example, in

the medical domain, we aim to compute a therapy (se-

quence of actions) for a particular patient (instance).

Instantiating an FMEA model for a particular instance

yields a state s determined by the possible values each

variable v ∈ V can take. For example, if it is known that

a patient has fever, the variable “body temperature” is

assigned the value “tooHigh”. Applying an action yields

a new state and each state is assigned a risk value based

on failures that can possibly occur in that state. The

goal is to minimise the risk by performing a sequence of

actions to reach a state having a low risk value (i.e., a

state corresponding to the patient being healthy). Be-

fore we formally define states and the risk of a state in

Section 3, we lay the foundations to automate planning

and acting in an FMEA model—that is, to automati-

cally compute the best possible therapy for a specific

patient according to the FMEA model.

2.2 Markov Decision Processes

An MDP [4] is a mathematical framework for modelling

a sequential decision problem with discrete time and a

fully observable, stochastic environment with a Marko-

vian transition model and additive rewards (i.e., there

is a reward in each state and these rewards are added

up for the sequence of states that have been visited).

Definition 3 (MDP) We define an MDP as a tuple

M = (S,A, s0, P,R, γ), where

– S is a finite set of states,

– A is a finite set of actions,

– s0 ∈ S is the initial state,

– P : S×A×S → [0, 1] is the transition function, i.e.,

P (s, a, s′) yields the probability of transitioning into

state s′ when taking action a in state s,

– R : S × A × S → R is a reward function, i.e.,

R(s, a, s′) is the reward for transitioning to state

s′ when taking action a in state s, and

– γ ∈ [0, 1] is the discount factor.

The discount factor γ indicates how much future re-

wards should be discounted, e.g., γ = 1 weights all re-

wards equally while smaller values for γ render future

rewards less significant. We write P (s′ | s, a) to refer to

the probability of transitioning to state s′ when taking

action a in state s (
∑

s′∈S P (s′ | s, a) = 1).

Example 3 (MDP) Figure 3 shows an exemplary MDP

with states S = {s1, s2} and actions A = {a1, a2}, de-
picted as a state-transition system. The initial state is

s1. In each state, both actions can be applied and the

transition probabilities are written next to the edges.

For example, when applying action a1 in state s1, the

probability to remain in state s1 is 0.3 and the proba-

bility to transition to state s2 is 0.7. In this particular

example, 2 · 2 · 2 = 8 rewards need to be specified to

define the reward function (R(s1, a1, s1), R(s1, a1, s2),
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s1 s2
a1: 0.3,
a2: 0.4

a1: 0.7, a2: 0.6

a1: 0.2, a2: 0.9

a1: 0.8,
a2: 0.1

Fig. 3: An example for an MDP with states S = {s1, s2}
and actions A = {a1, a2}. The transition probabilities

are given by the numbers written next to the edges.

Rewards and the discount factor are omitted for brevity.

and so on). We omit the discount factor and the exact

specification of the reward function for brevity.

A policy π : S → A is a total function which maps each

state to an action, i.e., π(s) returns the action to take

in state s. Solving the MDP yields an optimal policy π∗

which maps every state to the best possible action to

take in that state. The optimal sequence of actions is

the one having the maximum expected reward, i.e., the

optimal policy depends on the choice of the transition

probabilities and reward function.

Example 4 (Policy) Consider again the MDP depicted

in Fig. 3. A possible policy is

π(s) =

{
a1 if s = s1

a2 if s = s2.

The optimality of π depends on the choice of R.

In the next section, we show how an arbitrary FMEA

model can be transformed into an MDP, which can then

be solved to obtain an optimal policy, allowing us to au-

tomatically compute the best possible action to take in

a specific state of the model. We also introduce quali-

tative causal reasoning to compute the successor states

after applying an action in a particular state.

3 Automated Planning and Acting in FMEA

Models Using MDPs

In this section, we show how to automatically compute

the best possible sequence of actions for a specific in-

stance of an FMEA model. To automatically obtain the

best possible sequence of actions, we construct an MDP

from an FMEA model. The MDP can then be solved,

yielding an optimal policy for decision making.

3.1 Construction of the Markov Decision Process

Given an FMEA model F = (C,F,E,A,C2C,F2F,

E2E,C2F, F2E,A2E,RP,AP, pre, post, V, F2V,G), we
construct an MDP M = (S,A, s0, P,R, γ) as follows.

State space. The state space S is defined by the possi-

ble values each variable in V = {v1, . . . , vn} can take.

More specifically, S ⊆ ×n
i=12

range(vi) with 2X denoting

the power set of X without the empty set. As there is

typically no evidence available in the beginning, the ini-

tial state s0 defaults to s0 = ⟨range(v1), . . . , range(vn)⟩.
However, it is also conceivable to start with a differ-

ent initial state if there is additional evidence available.

Note that we model the states in a way such that ev-

ery state is observable, even though there is still un-

certainty about the exact values of the variables. We

denote by posss(vi) the set of possible values for vari-

able vi in state s (that is, posss(vi) references the i-th

component of the state vector s).

Example 5 Consider the set of variables V = {v1} with

range(v1) = {tooLow,normal, tooHigh}. The state space
of the MDP then consists of seven different states and

is given by S = {s1, . . . , s7} where s1 = ⟨{tooLow}⟩,
s2 = ⟨{normal}⟩, s3 = ⟨{tooHigh}⟩, s4 = ⟨{tooLow,
normal}⟩, s5 = ⟨{tooLow, tooHigh}⟩, s6 = ⟨{normal,

tooHigh}⟩, and s7 = ⟨{tooLow,normal, tooHigh}⟩. Each
state indicates the possible ranges of the variables in V ,

e.g., s1 is the state where it is known that v1 = tooLow,

s4 is the state where it is known that v1 ̸= tooHigh but

there is no information about whether v1 = tooLow

or v1 = normal, and so on. Without any evidence, the

initial state is s7, where v1 may take any value.

Action space and transition probabilities. The set of ac-

tions A in the MDP is directly given by the set of ac-

tions from the FMEA model. Both the preconditions

and the postconditions for the actions are directly trans-

ferred to the MDP as well, with an additional precon-

dition |posss(vi)| > 1 being added to each detection ac-

tion a that is used to detect the value of variable vi in

state s, i.e., a is only applicable if the value that should

be detected is not already known. If an action a ∈ A

cannot be applied in state s (i.e., its preconditions are

not met), we set P (s′ | s, a) = 0 for all successor states

s′. Otherwise, let S′ ⊆ S be the set of possible successor

states after applying action a in state s and let k = |S′|.
Note that for a particular instance, there is exactly one

successor state when applying action a in state s but in

the general MDP, all possible successor states that are

reachable for any instance need to be considered. The

computation of possible successor states relies on the

qualitative relationships encoded in the graph G and is

described in detail in Section 3.2. Given the set of pos-

sible successor states and the probability p for an action

a to be applied successfully, we set P (s′ | s, a) = p/k

for all successor states s′ ∈ S′ with s′ ̸= s (uniform

distribution—can also be adjusted if additional infor-

mation is available). The probability p of a detection



Automated Computation of Therapies Using Failure Mode and Effects Analysis in the Medical Domain 7

action a (i.e., (a, d) ∈ AP ) is given by prob(D) =

(9− (D−1))/9 where D ∈ {1, . . . , 10} is the detectabil-

ity of the failure e′ such that (a, (e′, e)) ∈ A2E (i.e.,

a is attached to the failure pair (e′, e) ∈ E2E). Note

that other probability measures are possible as well

(e.g., prob(D) = (10 − D)/10). For a prevention ac-

tion a (i.e., (a, p) ∈ AP ), we set p = prob(O) where

O ∈ {1, . . . , 10} is the occurrence of the failure e′ such

that (a, (e′, e)) ∈ A2E. Moreover, if the application of

an action a in state s is not successful, the system re-

mains in state s, i.e., P (s | s, a) = 1 − p, given that

a has no postconditions attached to it. In case an ac-

tion has postconditions attached to it, they are incorpo-

rated into the state regardless of whether the action has

been successful, i.e., if an action fails, only the effect of

the action itself is not incorporated into the new state

whereas the postconditions are. Finally, for all states

s′′ /∈ S′ that are not reachable when applying action a

in state s, we set P (s′′ | s, a) = 0.

Example 6 Consider an FMEA model with two fail-

ures e1 := right critical(v1) and e2 := right critical(v2)

(i.e., range(v1) = range(v2) = {normal, tooHigh}) with
(e1, e2) ∈ E2E and a prevention action a attached to

(e1, e2) (without preconditions). Let s = ⟨{tooHigh},
{normal}⟩. Then, the set of possible successor states af-
ter applying action a to prevent e1 is given by S′ = {s′}
with s′ = ⟨{normal}, {normal}⟩. Assuming that a al-

ways succeeds, applying a sets occ(e1) = 1 as a pre-

vents e1 from occurring (more details on the exact def-

inition of action semantics are given in Section 3.2).

In consequence, we obtain P (s′ | s, a) = prob(1)/1 =

(9 − (1 − 1))/9 = 1 as well as P (s | s, a) = 0, i.e., the

action sets v1 = normal while v2 is left unchanged.

Reward function. The reward for entering the initial

state s0 is set to zero, i.e., R(s, a, s0) = 0 for all ac-

tions a and states s. For all successor states s′ ̸= s0,

we define the reward R(s, a, s′) for going from state

s to successor state s′ with action a as described be-

low. Each state s′ induces a set of failures that cannot

be ruled out in s′, e.g., if tooLow ∈ posss′(vi), a fail-

ure e := left critical(vi) corresponding to vi being too

low cannot be ruled out (analogously for tooHigh and

failures being right critical). Let Es′ denote the set of

failures that cannot be ruled out in state s′ and let

0 ≤ RPNe ≤ 1000 denote the risk priority number for

the failure e. Then, we define the reward for going from

any state s to successor state s′ with action a as

R(s, a, s′) =
1

|Es′ |
∑

e∈Es′

pe · (1000−RPNe),

where pe is the failure probability for the failure e (if

failure probabilities are unknown, pe can be set to one

for every failure e). If |Es′ | = 0, we set R(s, a, s′) = ∞.

Note that neither s nor a occur in the right-hand side

of the equation, i.e., the reward for changing into state

s′ does not depend on the previous state s and the per-

formed action a. However, we include both s and a into

the left-hand side of the equation to demonstrate that

a more fine-grained definition of the reward function is

also conceivable if the necessary information is avail-

able. The maximum value for the risk priority number

RPNe is 1000 and RPNe is defined as

RPNe =

 min
e′∈causes(e)

RPNe′ if causes(e) ̸= ∅

0 otherwise,

where the risk priority number for each cause e′ of e is

a product of severity, occurrence, and detectability val-

ues. More specifically, for a cause-effect pair (e′, e), we

have RPNe′ = sev(e) ·O′ ·D′ with D′ = det(e′) if there

exists a detection action for (e′, e) which is applicable in

s′ and otherwise D′ = 10, and O′ = occ(e′) if there ex-

ists a prevention action attached to (e′, e) whose effect

is already manifested in s′ and otherwise O′ = 10 (re-

call that 10 is the maximum possible number both for

the detectability and the occurrence). The idea is that

the risk of each state s′ depends on the detectability

and the treatability of the failures that cannot be ruled

out in s′, i.e., if a failure can neither be detected nor

treated, it has a high risk priority number assigned to

it. The minimum operator corresponds to a conjunction

(AND) of failure causes. Clearly, other operators such

as a disjunction (OR) of failure causes could be used

as well (i.e., max instead of min for the computation of

RPNe). The choice of the discount factor γ is not part

of the transformation from FMEA model to MDP as γ

is set by the user independent of the FMEA model.

Example 7 Consider again the FMEA model consist-

ing of two failures e1 := right critical(v1) and e2 :=

right critical(v2) with (e1, e2) ∈ E2E. It holds that

range(v1) = range(v2) = {normal, tooHigh} and there

is a detection action a attached to (e1, e2) (with the

default precondition |posss(v1)| > 1 in each state s).

Further, let sev(e1) = 6, occ(e1) = 5, det(e1) = 9,

sev(e2) = 8, occ(e2) = 4, and det(e2) = 9 and pe1 =

pe2 = 1 for simplification. Then, we have, for exam-

ple, R(s, a, ⟨{tooHigh}, {tooHigh}⟩) = 1
2 · ((1000− 0)+

(1000 − 8 · 10 · 10)) (note that D′ = 10 as a is not ap-

plicable due to its precondition and O′ = 10 because

there exists no prevention action in this example) and

R(s, a, ⟨{normal}, {normal}⟩) = ∞ for all states s.

Before we continue to present an algorithm to auto-

matically compute the best therapy for a patient using

the optimal policy of the MDP, we first describe how
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the possible successor states after the application of an

action are computed using qualitative causal reasoning.

3.2 Computation of Successor States

As failures influence other failures, an action might have

an effect not only on the failure e it acts on, but also

on other failures that are effected by e. Therefore, we

propagate the effect of an action through the failure

hierarchy to determine the possible successor states af-

ter applying an action a in state s. Before we describe

how the effect of an action is propagated through the

failure hierarchy using qualitative causal reasoning, we

first define the semantics of an action.

We begin by defining the semantics of a detection

action a in state s, assuming that a is applicable in s.

Action a is attached to a failure pair (e′, e) ∈ E2E and

detects whether the failure cause e′ is present. Let e′ =

left critical(vi) (right critical(vi), respectively). Then,

it holds that posss′(vi) = {tooLow} ({tooHigh}) or

posss′(vi) = {normal} after transitioning into state s′

by applying action a in state s—that is, a detection ac-

tion determines the value of a variable vi if it succeeds

(a always succeeds if det(e′) = 1). In case det(e′) > 1,

a might fail occasionally as we have seen earlier at

the construction of the transition probabilities. Con-

sequently, after applying a detection action a in state

s, it holds that posss′(vi) ⊆ posss(vi) for all variables vi
and successor states s′ because the detection action re-

duces the uncertainty about the values of the variables.

Note that in the real world, it might be possible for a

detection action a to return an incorrect value (false

positive or false negative) if there is a measurement er-
ror. In its current form, the MDP does not account for

such measurement errors, i.e., the measured value de-

fines the successor state without taking into account

that the measured value might be erroneous.

A prevention action a is attached to a failure pair

(e′, e) ∈ E2E as well and prevents the failure cause e′

from occurring. More specifically, if e′ = left critical(vi)

(right critical(vi), respectively), then applying action

a in state s ensures that posss′(vi) = {normal} after

transitioning into state s′. In other words, a preven-

tion action a eliminates the failure cause e′ by assigning

the value of the corresponding variable vi to its normal

range and hence, we set occ(e′) = 1 after applying ac-

tion a (that is, we assume that the application of a is

always successful in preventing e′—it is also conceivable

that a might fail sometimes which can be modelled by

setting occ(e′) to a value greater than one).

Whenever an action is applied successfully, it might

affect not only the failure it directly operates on but

also other failures in the failure hierarchy. For example,

Algorithm 1: Compute Successor States

1 function succ states(G = (V,E′), a, s)
2 S′ ← ∅;

// vi is the variable a acts on

3 foreach possible outcome vi = ri of a do
4 s′ ← s;
5 if ri = tooLow then
6 σ ← ’−’;
7 else if ri = tooHigh then
8 σ ← ’+’;
9 else

10 σ ← ’0’;
11 E′′ ← E′ \ {(u, vi, ℓ) | ∃ℓ : (u, vi, ℓ) ∈ E′};
12 signs← propagate(G′ = (V,E′′), s, vi, σ);
13 foreach (v, σ′) ∈ signs do
14 if σ′ = ’−’ ∧ tooLow ∈ range(v) then
15 s′[v]← {tooLow};
16 else if σ′ = ’+’ ∧ tooHigh ∈ range(v)

then
17 s′[v]← {tooHigh};
18 else if σ′ = ’0’ then
19 s′[v]← {normal};
20 push(s′, S′);

21 return S′;

if we have (e1, e2) ∈ E2E (i.e., e1 causes e2) and an ac-

tion is applied that prevents e1 from occurring, then e2
cannot occur as well if there are no other causes for e2
other than e1. Analogously, if a detection action deter-

mines that e1 is not present in a particular state s, then

e2 cannot occur in s as well if there are no other causes

for e2 other than e1. As the presence or absence of a

failure might influence the information available about

its effects, we employ qualitative reasoning [7] to obtain

the possible successor states after applying action a in

state s. However, we cannot just apply qualitative rea-

soning as it is proposed in the literature [7,30] because

the propagation does not take into account the causal

structure of the failure hierarchy.

Instead, we introduce qualitative causal reasoning

to propagate changes only along the causal directions

of the edges in the failure hierarchy. In particular, when

intervening on a specific failure e, all incoming edges of

e must be cut off before the changes are propagated

through the graph [16,17]. Algorithm 1 depicts the al-

gorithm that is used to compute the set of possible suc-

cessor states S′ when applying an action a in state s.

The algorithm considers every possible outcome of the

action a in state s. For a prevention action, there is

a single outcome per definition, i.e., the value of the

corresponding variable is set to a specific value in its

range. The outcome of a detection action, however, is

not known when solving the MDP as multiple outcomes

are possible in practice (e.g., detecting the value of a

variable might either yield “tooLow” or “normal” and
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Algorithm 2: Qualitative Reasoning (based

on the qualitative sign propagation algorithm

proposed by Druzdzel and Henrion [7])

1 function propagate(G = (V,E′), s, u, σ)
2 signs← empty dictionary;
3 vis← ∅;
4 foreach v ∈ V do
5 signs[v]← signs(v);
6 propagate rec(G, u, u, σ, signs, vis);
7 return signs;

8 function propagate rec(G, u, v, σ, signs, vis)
9 msgs = {σ};

10 signs[v]← ’0’;
11 foreach w ∈ Pa(v) \ {u} do
12 ℓ← label of the edge between w and v;
13 msgs← msgs ∪ {signs[w]⊗ ℓ};
14 σ′ ← signs[v];
15 foreach m ∈ msgs do
16 σ′ ← σ′ ⊕m;
17 signs[v]← σ′;
18 vis← vis ∪ {v};
19 foreach w ∈ Ch(v) do
20 ℓ← label of the edge between v and w;
21 m← signs[v]⊗ ℓ;
22 if w /∈ vis ∧ signs[w] ̸= m then
23 propagate rec(G, v, w,m, signs, vis);

we do not know in advance which of these will be de-

tected for a particular instance). We denote by ri the

outcome of action a on variable vi, i.e., a acts on vi
and we have ri = normal if a is a prevention action,

otherwise ri equals the detected value (ri ∈ {tooLow,
normal, tooHigh}). Thus, it holds that vi = ri after ap-

plying action a, i.e., the i-th component of the successor

state vector is set to {ri}. We abuse notation and write

s′[vi] instead of s′[i] in the following to refer to the po-

sition of a variable vi in the state vector. The value ri
of vi is converted to a sign (’−’ for “tooLow”, ’+’ for

“tooHigh”, and ’0’ for “normal”) which is then propa-

gated through a modified version of the graph G (which

encodes the qualitative relationships between the vari-

ables using edges labelled with signs ’+’, ’−’, and ’?’)

where the edges between the parents of vi and vi are

removed. The removal of edges between the parents of

vi and vi in G yields a modified graph G′ which is then

used as an input for the qualitative reasoning algorithm

illustrated in Algorithm 2 to avoid the propagation of

changes against the causal edge direction.

The algorithm for qualitative reasoning builds on

the qualitative sign propagation algorithm proposed by

Druzdzel and Henrion [7]. It starts by assigning each

variable v ∈ V a sign in Line 5, depending on the possi-

⊗ + − 0 ?

+ + − 0 ?
− − + 0 ?
0 0 0 0 0
? ? ? 0 ?

⊕ + − 0 ?

+ + ? + ?
− ? − − ?
0 + − 0 ?
? ? ? ? ?

Table 1: Definition of the sign multiplication (⊗) and

sign addition (⊕) operators according to Wellman [30].

v1

v3

v2+ +

’+’⊕ ’−’ = ’?’

+ −
’+’⊗ ’+’ = ’+’ ’+’⊗ ’−’ = ’−’

Fig. 4: An example for propagating the sign of v1 to v3.

During the propagation, all other parents of v3 (here

only v2) are also taken into account. Both v1 and v2
are assigned the sign ’+’ and therefore v3 receives the

two messages ’+’⊗ ’+’ = ’+’ and ’+’⊗ ’−’ = ’−’, which

are then combined using the sign addition operator to

obtain ’+’⊕ ’−’ = ’?’ as a new sign for v3.

ble values v can take in state s. In particular, we define

signs(v) =


’+’ if posss(v) = {tooHigh}
’−’ if posss(v) = {tooLow}
’0’ if posss(v) = {normal}
’?’ otherwise.

The sign of the variable vi on which the action a has

been applied is updated first by calling propagate rec

with u = v = vi as parameter in Line 6. The propagated

information (i.e., the signs of the variables) is stored

in a dictionary signs and already visited variables are

stored in a set vis such that each variable is visited at

most once. During the propagation procedure, we make

use of the sign multiplication (⊗) and sign addition (⊕)

operators [30], which are defined in Table 1. In every

call of propagate rec, u propagates its sign to v. During

the propagation from u to v, all other parents of v are

also considered (Line 9 to Line 17). More specifically,

the algorithm computes a message from all parents of

v to v (note that the message from u is already given

by σ) and afterwards uses the sign addition operator to

combine the messages of the parents into a new sign for

v. After the sign of v has been updated, v propagates its

new sign to its children that have not been visited yet by

recursively calling propagate rec (Line 19 to Line 23).

Example 8 Consider the graph shown in Fig. 4 with

edges v1
+→ v3 and v2

−→ v3 and assume that v1 is as-

signed the sign ’+’ which is then propagated to its chil-

dren, i.e., to v3. If we also have evidence for v2 suggest-
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c1

c2

c3

f1

f2

f3

v1

v2

v3

+

+

+

e1

e2

e3

a

+

+

Fig. 5: A visualisation of an FMEA model with current

state s = ⟨{tooHigh}, {tooHigh}, {tooHigh}⟩ (the vari-

able assignments v1 = v2 = v3 = tooHigh are indicated

by the ’+’ signs next to the variables). Action a is a pre-

ventive action for e2, i.e., applying a sets v2 = normal.

The effect of a is then propagated according to the fail-

ure hierarchy such that the successor state after apply-

ing a in s is s′ = ⟨{tooHigh}, {normal}, {normal}⟩.

ing that its value is “tooHigh” (i.e., the sign of v2 is ’+’),

however, we cannot assign v3 the result of the propaga-

tion from v1 to v3 (i.e., ’+’⊗ ’+’ = ’+’) because there is

another influence of v2 on v3 (i.e., ’+’⊗’−’ = ’−’). Con-

sequently, we know that v3 both increases (due to v1)

and decreases (due to v2) at the same time and we can-

not infer whether v3 will eventually become “tooLow”

or “tooHigh” in this situation. The algorithm therefore

uses sign addition on all messages from the parents of

v3, such that the new sign for v3 is ’+’⊕ ’−’ = ’?’.

After the propagation of signs is finished, the new signs

are returned and converted back to values in {tooLow,
normal, tooHigh} (in Algorithm 1). The new state s′

obtained from the propagation is then added to the

list of possible successor states. Performing qualitative

causal reasoning instead of just setting the value of the

variable vi decreases the number of reachable states,

i.e., states that contain inconsistent information cannot

be reached and hence the state space is smaller than it

would be without the propagation of information.

Example 9 For a more comprehensive example of the

qualitative causal reasoning algorithm to compute pos-

sible successor states, take a look at the FMEA model

depicted in Fig. 5. The FMEA model contains three

failures e1 := right critical(v1), e2 := right critical(v2),

and e3 := right critical(v3) with failure hierarchy e1 →
e2 → e3, i.e., (e1, e2) ∈ E2E and (e2, e3) ∈ E2E.

It holds that range(v1) = range(v2) = range(v3) =

{normal, tooHigh}. Further, let a be a prevention action

attached to (e2, e3) and G = ({v1, v2, v3}, {(v1, v2,+),

(v2, v3,+)}) be the corresponding graph encoding the

qualitative relationships between v1, v2, and v3. When

applying action a in state s = ⟨{tooHigh}, {tooHigh},
{tooHigh}⟩, the successor states are computed as fol-

lows. As a sets v2 = normal, σ = ’0’ is propagated

starting from v2. During initialisation in Line 5, the al-

gorithm assigns signs[v1] = signs[v2] = signs[v3] = ’+’

(because v1 = v2 = v3 = tooHigh in s). In the first call

of propagate rec, it holds that u = v = v2 and hence

there are no parents of v (because the ingoing edges of

v2 have been removed before calling propagate). Hence,

after initially setting signs[v2] = ’0’, the first update

being made is signs[v2] = signs[v2]⊕σ = ’0’⊕ ’0’ = ’0’.

Then, v2 is marked as visited and in the next call of

propagate rec, it holds that u = v2, v = v3, and σ =

signs[v2]⊗ ’+’ = ’0’. As v3 has no other parents apart

from v2, the next update being made after initially set-

ting signs[v3] = ’0’ is signs[v3] = signs[v3] ⊕ σ =

’0’ ⊕ ’0’ = ’0’. Afterwards, v3 is marked as visited and

the propagation algorithm terminates as there are no

children for v3. Finally, the signs of the variables are

translated back to values in their range such that the

new state is s′ = ⟨{tooHigh}, {normal}, {normal}⟩. As
v2 = normal is the only possible outcome of a, there are

no other successor states apart from s′. Note that the

value of v1 is left unchanged as the prevention action

performed on v2 has no effect on v1.

If additional information about quantitative relation-

ships between variables is available, it is also possible to

use quantitative causal reasoning [17] instead of qual-

itative causal reasoning. Before we show how solving

the MDP of an FMEA model yields optimal thera-

pies for patients in the medical domain, we note that

it is also conceivable to employ a partially observable

MDP [11,33] instead of an MDP to formalise the FMEA

model. However, the transformation from FMEA model

to partially observable MDP is not immediately clear

and dealing with partially observable MDPs is far more

complex than dealing with MDPs, which is a major

drawback especially in the medical domain where ac-

quiring the observation probabilities required by a par-

tially observable MDP is a highly difficult task (as these

probabilities are usually not known).

Next, we give a full algorithm taking as input an

FMEA model and patient data of a specific patient to

return an optimal therapy for that patient.

4 Automated Computation of Optimal

Therapies in the Medical Domain

Solving the MDP from Section 3 yields an optimal pol-

icy π∗ which maps every state to an optimal action.

The optimal policy π∗ can then be used to compute
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Algorithm 3: Compute Optimal Therapy

1 function optimal therapy(F , s0, sg, θ,D)
2 M← fmea to mdp(F , s0);
3 π∗ ← solve mdp(M);
4 therapy ← [ ];
5 s′ ← s0;
6 repeat
7 s← s′;
8 a← π∗(s);
9 push(a, therapy);

10 s′ ← a(s,D);

11 until s′ = sg ∨R(s, a, s′) > θ;
12 return therapy;

therapies for patients. Executing an action a = π∗(s)

in state s for an individual patient yields a specific suc-

cessor state s′ for which π∗ also returns the best possi-

ble action to take. Thus, the optimal policy π∗ directly

corresponds to an optimal therapy. By adding a goal

state to the MDP or a threshold on the reward, we

can formulate an algorithm that computes the optimal

therapy according to a given FMEA model.

Algorithm 3 outlines how to compute the optimal

therapy for a specific patient according to a given FMEA

model F . The initial state s0 is given by the available

evidence for the patient. First, the algorithm transforms

F into an MDP M and then solves M to obtain the op-

timal policy π∗. The algorithm then iteratively applies

the optimal policy to the current state s until either

the goal state sg (it is also conceivable to have a set

of goal states instead of a single goal state) is reached

or the reward R(s, a, s′) reaches a user-defined thresh-

old θ. All actions that have been applied as part of the

optimal policy are appended to the resulting therapy.

Whenever an action a is applied, the patient data D

are taken into account to determine the unique succes-

sor state s′ (the patient data contains the information

about the exact result of the applied action, e.g., the

outcome of a detection action).

Example 10 Take a look again the example shown in

Fig. 2. The model states that too much interstitial fluid

volume results in an interstitial pulmonary edema, i.e.,

e1 = right critical(v1), and too little diffusing capac-

ity of the lung impairs the gas exchange, i.e., e2 =

left critical(v2). In particular, it holds that range(v1) =

{normal, tooHigh} and range(v2) = {normal, tooLow}
and the edge v1

−→ v2 implies that if v1 increases, it

causes v2 to decrease, i.e., if the interstitial fluid volume

is too high, the diffusing capacity of the lung will even-

tually become too low. Moreover, we have pre = {(p1,
v1 = tooHigh)}, i.e., the action p1 can only be applied

if an interstitial pulmonary edema is detected. For the

sake of this example, let sev(e1) = 5, occ(e1) = 4,

det(e1) = 9, sev(e2) = 7, occ(e2) = 5, det(e2) = 9,

pe1 = 0.4, and pe2 = 0.5. The corresponding MDP

to this FMEA model consists of the action space A =

{d1, p1} and the state space S = {s1, . . . , s9}, where

– s1 = ({normal}, {normal}),
– s2 = ({normal}, {tooLow}),
– s3 = ({tooHigh}, {normal}),
– s4 = ({tooHigh}, {tooLow}),
– s5 = ({normal, tooHigh}, {normal}),
– s6 = ({normal, tooHigh}, {tooLow}),
– s7 = ({normal}, {normal, tooLow}),
– s8 = ({tooHigh}, {normal, tooLow}), and
– s9 = ({normal, tooHigh}, {normal, tooLow}).

The initial state for a patient without evidence is s9
and the goal state in this example is s1. Solving the

MDP corresponding to the given FMEA model then

yields a policy π∗ that returns appropriate actions for

each state, e.g., π∗(s4) = p1 such that the goal state is

reached immediately after applying p1 in s4 (due to the

propagation of the effect of p1). If we consider a patient

arriving at a hospital who has an interstitial pulmonary

edema and thus an impaired gas exchange (but this di-

agnosis is not known beforehand), the optimal therapy

computed by Algorithm 3 would be ⟨d1, p1⟩ (because

the patient data D tells us that applying d1 in state s9
results in a transition to state s4). In other words, the

recommended therapy would be to first apply the detec-

tion action d1 (which then finds out about the patient’s

interstitial pulmonary edema) and afterwards to apply

the prevention action p1 (whose preconditions are then

satisfied) to treat the disease accordingly.

Before we conclude this paper, we discuss further ap-

plications and limitations of our proposed approach.

5 Discussion

The general approach of transforming an FMEA model

into an MDP to automatically compute the best se-

quence of actions to reduce the risk as much as possi-

ble is obviously not restricted to the medical domain.

Hence, industries such as the automotive industry, the

aerospace industry, and manufacturing industries in gen-

eral, which commonly apply the FMEA approach, can

also vastly benefit from the automatic planning and

acting capabilities provided by the MDP.

However, the presented approach to transform an

FMEA model into an MDP clearly has its own limita-

tions and can be further refined, e.g., by integrating dif-

ferent ranges of variables and hence additional failures

having semantics that are different from left critical(vi)

and right critical(vi), by adding costs to actions, by
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handling erroneous measurements obtained from de-

tection actions, and so on. It is also possible to incor-

porate a probability distribution over the variables in

V to allow for probabilistic (quantitative) causal in-

ference [17] instead of merely using qualitative causal

inference. Obtaining more fine-grained FMEA models,

however, is a serious challenge in the medical domain—

and most likely also in other domains—as obtaining

the additionally required information involves a lot of

effort. Another limitation of the MDP is its scalabil-

ity. As we have seen in Example 10, the state space of

the MDP becomes quite large even for a small FMEA

model. Even though the propagation of action effects

during the computation of successor states results in

many states not being reachable at all (and hence they

could be omitted from the MDP after an initial reach-

ability check), the size of the state space is still a lim-

itation when it comes to solving the MDP for large

FMEA models. To encounter the scalability problem in-

duced by large state spaces, reinforcement learning [26]

might be applied as a remedy. Similar to the AlphaZero

program [23] (which has been developed to master the

games of chess, shogi, and go where the state spaces

are also huge), one could use reinforcement learning to

learn an approximation of the optimal policy. The idea

is to sample an initial state and random sequences of

actions for which then the reward of the resulting state

is used as a measure of quality for that particular ac-

tion sequence. By repeating the sampling procedure for

various initial states and action sequences, an approxi-

mation of the optimal policy can be obtained. The de-

velopment of such a reinforcement learning approach,

however, is out of the scope of this paper and hence an

interesting direction for future work.

Before we conclude this paper, we give an outlook on

possibilities to augment large language models (LLMs)

with formalised domain knowledge represented in for-

mal models such as FMEA models and their corre-

sponding MDP. We believe that formal models can be

used to generate training data for the fine-tuning step

of an LLM by sampling the model. The MDP allows

us to generate training data for LLMs by computing

therapies for a lot of different initial states, thresholds,

and patient data. Given the generated data, the com-

puted therapies can be verbalised (i.e., translated to

natural language) and afterwards, the verbalised data

can be used to fine-tune a pre-trained LLM. By inte-

grating the knowledge of domain experts represented in

the formal model into the LLM, the LLM might pro-

duce less hallucinations. Furthermore, it is conceivable

to use a formal model again to validate the output of

the LLM by translating the output of the LLM into the

syntax of the formal model and then using the formal

model to check whether the input-output pair of the

LLM matches the computed optimal therapy.

6 Conclusion

We present a formal framework to conduct automated

planning and acting in FMEA models. In particular,

we apply FMEA to the medical domain and transform

the resulting FMEA model into an MDP to automati-

cally compute optimal therapies for individual patients.

Further, we introduce qualitative causal reasoning to

compute the successor states in the MDP after apply-

ing an action, yielding a fully automated algorithm to

compute a therapy for a particular patient.

Future work includes the application of reinforce-

ment learning to encounter the state space explosion of

the MDP, as well as the augmentation of general LLMs

with formalised domain knowledge.
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