
Lifting Factor Graphs with Some Unknown Factors for

New Individuals✩

Malte Luttermanna,∗, Ralf Möllerb, Marcel Gehrkeb

a German Research Center for Artificial Intelligence (DFKI), Ratzeburger Allee 160,
23562, Lübeck, Germany

b Institute for Humanities-Centered Artificial Intelligence, University of Hamburg,
Warburgstraße 28, 20354, Hamburg, Germany

Abstract

Lifting exploits symmetries in probabilistic graphical models by using a rep-
resentative for indistinguishable objects, allowing to carry out query answer-
ing more efficiently while maintaining exact answers. In this paper, we in-
vestigate how lifting enables us to perform probabilistic inference for factor
graphs containing unknown factors, i.e., factors whose underlying function of
potential mappings is unknown. We present the Lifting Factor Graphs with
Some Unknown Factors (LIFAGU) algorithm to identify indistinguishable
subgraphs in a factor graph containing unknown factors, thereby enabling
the transfer of known potentials to unknown potentials to ensure a well-
defined semantics of the model and allow for (lifted) probabilistic inference.
We further extend LIFAGU to incorporate additional background knowledge
about groups of factors belonging to the same individual object. By incor-
porating such background knowledge, LIFAGU is able to further reduce the
ambiguity of possible transfers of known potentials to unknown potentials.

Keywords: probabilistic graphical models, factor graphs, lifted inference

✩This paper is a revised and extended version of a paper (Luttermann et al., 2023) that
has been published at the Seventeenth European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU 2023).

∗Corresponding author
Email addresses: malte.luttermann@dfki.de (Malte Luttermann),

ralf.moeller@uni-hamburg.de (Ralf Möller), marcel.gehrke@uni-hamburg.de
(Marcel Gehrke)

Preprint submitted to International Journal of Approximate Reasoning

1. Introduction

To perform inference in a probabilistic graphical model, all potential map-
pings of every factor are required to be known to ensure a well-defined se-
mantics of the model. However, in practice, scenarios arise in which not all
factors are known. For example, consider a database of a hospital containing
patient data and assume a new patient arrives and we want to include them
into an existing probabilistic graphical model such as a factor graph (FG).
Clearly, not all attributes included in the database are measured for every
new patient, i.e., there are some values missing, resulting in an FG with un-
known factors and ill-defined semantics when including a new patient in an
existing FG. More specifically, it is conceivable that in a first examination of
the new patient, a measurement of their blood pressure is conducted whereas
measurements for other attributes are not immediately performed. There-
fore, we aim to add new patients to an existing group of indistinguishable
patients to treat them equally in the FG, thereby allowing for the imputa-
tion of missing values under the assumption that there exists such a group for
which all values are known. In particular, we study the problem of construct-
ing a lifted representation having well-defined semantics for an FG contain-
ing unknown factors—that is, factors whose underlying function mappings
from input to output are unknown. In probabilistic inference, lifting exploits
symmetries in a probabilistic graphical model, thereby allowing to carry out
query answering more efficiently while maintaining exact answers (Niepert
and Van den Broeck, 2014). The main idea behind lifted inference is to use
a representative of indistinguishable individuals for computations. By lifting
the probabilistic graphical model, we ensure a well-defined semantics of the
model and at the same time allow for tractable probabilistic inference (e.g.,
inference requiring polynomial time) with respect to domain sizes.

Previous work to construct a lifted representation builds on the Weisfeiler-
Leman algorithm (Weisfeiler and Leman, 1968) which incorporates a colour
passing procedure to detect symmetries in a graph, e.g. to test for graph iso-
morphism. To construct a lifted representation, denoted as a parameterised
factor graph (PFG), for a given FG in which all factors are known, the ad-
vanced colour passing (ACP) algorithm (Luttermann et al., 2024a,c,d) is the
state of the art. The ACP algorithm builds on the colour passing algorithm
(originally named “CompressFactorGraph”) (Kersting et al., 2009; Ahmadi
et al., 2013), which itself is based on work by Singla and Domingos (2008).
ACP detects symmetries in an FG to obtain possible groups of random vari-

2

ables (randvars) and factors by deploying a colour passing procedure similar
to the Weisfeiler-Leman algorithm. Having obtained a lifted representation,
algorithms for lifted inference can be applied. A widely used algorithm for
lifted inference is the lifted variable elimination algorithm, first introduced by
Poole (2003) and afterwards refined by many researchers to reach its current
form (De Salvo Braz et al., 2005, 2006; Milch et al., 2008; Kisyński and Poole,
2009; Taghipour et al., 2013; Braun and Möller, 2018). Another prominent
algorithm for lifted inference is the lifted junction tree algorithm (Braun and
Möller, 2016), which is designed to handle sets of queries instead of single
queries. More recently, causal knowledge has also been incorporated into
PFGs to allow for lifted causal inference (Luttermann et al., 2024b).

To encounter the problem of constructing a PFG as a lifted representa-
tion for an FG containing unknown factors, we introduce the Lifting Factor
Graphs with Some Unknown Factors (LIFAGU) algorithm, which is a gen-
eralisation of the ACP algorithm. LIFAGU is able to handle arbitrary FGs,
regardless of whether all factors are known or not. By detecting symmetries
in an FG containing unknown factors, LIFAGU generates the possibility to
transfer the potentials of known factors to unknown factors to eliminate
unknown factors from an FG. We show that, under the assumption that
for every unknown factor there is at least one known factor such that they
have an indistinguishable surrounding graph structure, all unknown potential
mappings in an FG can be replaced by known potential mappings. Thereby,
LIFAGU ensures a well-defined semantics of the model and allows for lifted
probabilistic inference. We further extend LIFAGU to incorporate back-
ground knowledge about multiple factors belonging to the same individual
object—that is, if we know that a set of factors belongs to the same individ-
ual object, LIFAGU might be able to exploit this knowledge to reduce the
ambiguity for possible transfers of known potential mappings.

The remaining part of this paper is structured as follows. Section 2
introduces necessary background information and notations. We first reca-
pitulate FGs, afterwards define PFGs as first-order probabilistic models, and
then describe the ACP algorithm as a foundation for LIFAGU. Afterwards,
in Section 3, we introduce LIFAGU as a generalisation of ACP allowing us
to obtain a lifted representation (a PFG) for an FG that possibly contains
unknown factors. In Section 4, we extend LIFAGU to incorporate back-
ground knowledge. We then present the results of our empirical evaluation
in Section 5 before we conclude in Section 6.

3

2. Preliminaries

In this section, we begin by defining FGs as propositional representa-
tions for a joint probability distribution between randvars and then introduce
PFGs, which combine probabilistic models and first-order logic. Thereafter,
we describe the ACP algorithm to lift a propositional model, i.e., to transform
an FG into a PFG with equivalent semantics.

2.1. Factor Graphs and Parameterised Factor Graphs

An FG is an undirected graphical model to compactly encode a full joint
probability distribution over a set of randvars by representing the distribution
as a product of factors (Frey et al., 1997; Kschischang et al., 2001).

Definition 2.1 (Factor Graph, Kschischang et al., 2001). An FG G =
(V ,E) is an undirected bipartite graph consisting of a node set V = R∪F ,
where R = {R1, . . . , Rn} is a set of randvars (also referred to as variable
nodes) and F = {f1, . . . , fm} is a set of factor nodes, as well as a set of
edges E ⊆ R × F . Every factor node fj ∈ F defines a function ϕj(Rj),
where ϕj : ×R∈Rj

range(R) 7→ R+ maps a sequence Rj of randvars from R
to a positive real number (called potential). The term range(Ri) denotes the
possible values of a randvar Ri. There is an edge between a variable node Ri

and a factor node fj = ϕj(Rj) in E if Ri appears in the argument list of ϕj.
The semantics of the FG G is given by

PG =
1

Z

m∏
j=1

ϕj(Rj) (1)

with Z being the normalisation constant and Rj denoting the randvars ap-
pearing in the argument list of ϕj.

Example 2.1. Figure 1 shows an FG representing an epidemic example with
two individuals (alice and bob) as well as two possible medications (m1 and
m2) for treatment. For each individual, there are two Boolean randvars Sick
and Travel, indicating whether the individual is sick and travels, respectively.
There is another Boolean randvar Treat for each combination of individual
and medication, specifying whether the individual is treated with the medi-
cation. The Boolean randvar Epid states whether an epidemic is present.
Every factor fj defines a function, e.g., f0 = ϕ0(Epid) defines two potential

4

Epid

f0

f1 f1

Sick.alice Sick.bob
f2

f2

f2

f2

Travel.alice Travel.bob

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

f3 f3

Figure 1: An FG for an epidemic example (Hoffmann et al., 2022) with two individuals
alice and bob as well as two medications m1 and m2 for treatment. For simplicity, all
randvars are Boolean and the input-output pairs of the factors are omitted.

mappings ϕ0(Epid = true) and ϕ0(Epid = false), which are both mapped to
a positive real number, respectively. We omit the exact specification of the
potential mappings from arguments to positive real numbers for brevity.

Note that even though the labelling of the nodes in Fig. 1 may suggest
so, there is no explicit representation of individuals in the graph structure
of the propositional FG. The labels of the nodes only serve for the reader’s
understanding and in general, the node labels can be arbitrary strings of
characters. For example, consider the label Treat.alice.m1. We deliberately
avoid using a notation with parameters such as Treat(alice,m1) to emphasise
that the label does not explicitly encode that there is an individual alice and
a medication m1. Instead, the label is an arbitrary string of characters (and
is only chosen as Treat.alice.m1 for better readability).

Clearly, the size of the FG increases with an increasing number of indi-
viduals even though it is not necessary to distinguish between individuals
because there are symmetries in the model (the factors f1 and f3 occur two
times and the factor f2 occurs four times). In other words, the probability
of an epidemic does not depend on knowing which specific individuals are
being sick, but only on how many individuals are being sick. To exploit such
symmetries in a model, PFGs can be used. In the following, we define PFGs,
first introduced by Poole (2003), based on the definitions given by Gehrke
et al. (2020). PFGs combine first-order logic with probabilistic models, us-

5

ing logical variables (logvars) as parameters in randvars to represent sets of
indistinguishable randvars, forming parameterised randvars (PRVs).

Definition 2.2 (Parameterised Random Variable). Let R be a set of randvar
names, L a set of logvar names, Φ a set of factor names, and D a set of
constants. All sets are finite. Each logvar L has a domain dom(L) ⊆ D.
A constraint is a tuple (X ,CX) of a sequence of logvars X = (X1, . . . , Xn)
and a set CX ⊆ ×n

i=1dom(Xi). The symbol ⊤ for C marks that no restric-
tions apply, i.e., CX = ×n

i=1dom(Xi). A PRV R(L1, . . . , Ln), n ≥ 0, is
a syntactical construct of a randvar R ∈ R possibly combined with logvars
L1, . . . , Ln ∈ L to represent a set of randvars. If n = 0, the PRV is param-
eterless and forms a propositional randvar. A PRV A (or logvar L) under
constraint C is given by A|C (L|C, respectively). We may omit |⊤ in A|⊤ or
L|⊤. The term range(A) denotes the possible values of a PRV A. An event
A = a denotes the occurrence of PRV A with range value a ∈ range(A) and
we call a set of events E = {A1 = a1, . . . , Ak = ak} evidence.

Example 2.2. Consider R = {Epid, Travel, Sick, Treat} and L = {X,M}
with dom(X) = {alice, bob} (people), dom(M) = {m1,m2} (medications),
combined into Boolean PRVs Epid, Travel(X), Sick(X), and Treat(X,M).

In the previous example, there are two indistinguishable individuals alice
and bob as well as two indistinguishable medications m1 and m2. Note that
in general, there might be multiple groups of indistinguishable individuals,
e.g., in addition to alice and bob there might be another group of individuals
dave and eve such that alice and bob as well as dave and eve are indis-
tinguishable, respectively. To represent multiple groups of indistinguishable
objects, constraints are used. For example, instead of having a single PRV
Sick(X), we might have two PRVs Sick(X)|C1 and Sick(X)|C2 with con-
straints C1 = (X, {alice, bob}) and C2 = (X, {dave, eve}), respectively, to
represent that alice and bob as well as dave and eve are indistinguishable
with respect to being sick. Analogously, we might have constraints for the
PRVs Travel(X) and Treat(X,M), allowing us to represent different com-
binations of groups of indistinguishable objects.

A parametric factor (parfactor) describes a function, mapping argument
values to positive real numbers (potentials), of which at least one is non-zero.

Definition 2.3 (Parfactor). Let Φ denote a set of factor names. We de-
note a parfactor g by ϕ(A)|C with A = (A1, . . . , An) being a sequence of

6

Epid

Sick(X)Travel(X) Treat(X,M)

g0

g1 g2

g3

Figure 2: A PFG corresponding to the lifted representation of the FG depicted in Fig. 1.
The input-output pairs of the parfactors are again omitted for brevity.

PRVs, ϕ : ×n
i=1 range(Ai) 7→ R+ being a function with name ϕ ∈ Φ map-

ping argument values to a positive real number called potential, and C being
a constraint on the logvars of A. We may omit |⊤ in ϕ(A)|⊤. The term
lv(Y) refers to the logvars in some element Y , a PRV, a parfactor, or sets
thereof. The term gr(Y|C) denotes the set of all instances (groundings) of Y
with respect to constraint C.

Example 2.3. Take a look at g1 = ϕ1(Epid, Travel(X), Sick(X))|⊤ and let
dom(X) = {alice, bob}. If all PRVs are Boolean, g1 specifies 2·2·2 = 8 input-
output pairs ϕ1(true, true, true) = φ1, ϕ1(true, true, false) = φ2, and so on
with φi ∈ R+. Moreover, it holds that lv(g1) = {X} and gr(g1) = {ϕ1(Epid,
Travel(alice), Sick(alice)), ϕ1(Epid, Travel(bob), Sick(bob))}. Thus, in this
specific example, g1 represents a set of two ground factors.

A set of parfactors {gj}mj=1 then forms a PFG G.

Definition 2.4 (Parametric Factor Graph). A PFG G = (V ,E) is a bi-
partite graph with node set V = A ∪G where A = {A1, . . . , An} is a set of
PRVs and G = {g1, . . . , gm} is a set of parfactors. A PRV Ai and a parfactor
gj are connected via an edge in G (i.e., {Ai, gj} ∈ E) if Ai appears in the
argument list of gj = ϕj(Aj). The semantics of G is given by grounding and
building a full joint distribution. With Z as the normalisation constant and
Ak denoting the PRVs occurring in the argument list of ϕk, G represents

PG =
1

Z

∏
gj∈G

∏
ϕk∈gr(gj)

ϕk(Ak). (2)

7

Example 2.4. Figure 2 shows a PFG G consisting of the PRVs Epid,
Travel(X), Sick(X), and Treat(X,M) as well as of the four parfactors
{gi}3i=0 where g0 = ϕ0(Epid)|⊤, g1 = ϕ1(Epid, Travel(X), Sick(X))|⊤, g2 =
ϕ2(Treat(X,M), Sick(X), Epid)|⊤, and g3 = ϕ3(Travel(X), Sick(X))|⊤. G
is a lifted representation of the FG shown in Fig. 1 and the number of PRVs
and parfactors in G remains constant even if the number of individuals and
medications in the model increases.

We remark that the definition of PFGs also includes FGs, as every FG is
a PFG containing only parameterless randvars. In Definition 2.1, we assume
that all functions encoded by the factors are known. As the semantics of
an FG is given by a product over its factors, the input-output mappings of
the factors must be known to ensure a well-defined semantics of the model.
However, in practice, the underlying function specifications of factors might
be unknown, leading to the presence of unknown factors in an FG. The
upcoming definition formalises the notion of an unknown factor.

Definition 2.5 (Unknown Factor). Let G = (V ,E) denote an FG with
node set V = R ∪ F , where R = {R1, . . . , Rn} is a set of randvars and
F = {f1, . . . , fm} is a set of factors. An unknown factor fj is a factor whose
function specification ϕj(Rj) is unknown, i.e., the arguments Rj of ϕj are
known but the potential values to which ϕj maps its arguments are unknown.

Before we deal with unknown factors, we first introduce the ACP algo-
rithm, which constructs a PFG from a given FG where all factors are known.
Thereafter, we generalise ACP to handle the presence unknown factors.

2.2. The Advanced Colour Passing Algorithm

The ACP algorithm (Luttermann et al., 2024a) constructs a lifted repre-
sentation for an FG in which all factors are known. As LIFAGU generalises
ACP, we briefly recap how the ACP algorithm works. The idea is to find
symmetries in an FG based on potentials of factors, ranges and evidence of
randvars, as well as on the graph structure. Each variable node (randvar) is
assigned a colour depending on its range and observed event, meaning that
randvars with identical ranges and identical observed events are assigned the
same colour, and each factor is assigned a colour depending on its potentials,
i.e., factors encoding functions with the same potential mappings receive the
same colour. The colours are first passed from every variable node to its

8

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

g0

R(X)

B

Figure 3: The colour passing procedure of the ACP algorithm on an exemplary input
FG (Ahmadi et al., 2013) containing three Boolean randvars without evidence and two
factors encoding functions with identical potential mappings.

neighbouring factor nodes and each factor f collects all colours of neigh-
bouring randvars in the order of their appearance in the argument list of f ’s
underlying function. Based on the collected colours and their own colour,
factors are grouped together and reassigned a new colour (to reduce commu-
nication overhead). Then, colours are passed from factor nodes to variable
nodes. Based on the collected colours and their own colour, randvars are
grouped together and reassigned a new colour. The colour passing procedure
is iterated until groupings do not change anymore and in the end, all randvars
and factors are grouped together based on their colour signatures (that is,
the messages they received from their neighbours plus their own colour).

Example 2.5. Figure 3 depicts the procedure of the ACP algorithm on a
simple FG. The two factors f1 and f2 encode functions with identical po-
tential mappings in this example. As all three randvars are Boolean and
there is no evidence available, A, B, and C are assigned the same colour
(e.g., green). Furthermore, the potential mappings of f1 and f2 are iden-
tical, so they are assigned the same colour (e.g., purple). The colours are
then passed from randvars to factors: f1 receives two times the colour green
from A and B and f2 receives two times the colour green from B and C.
Afterwards, f1 and f2 are recoloured according to the colours they received
from their neighbours. Since both f1 and f2 received the same colours, they
are assigned the same colour during recolouring (e.g., purple). The colours
are then passed from factors to randvars. Here, A receives the colour purple
from f1, B receives the colour purple from f1 and the colour purple from
f2, and C receives the colour purple from f2. Building on these new colour
signatures, the randvars are recoloured such that A and C receive the same

9

colour whereas B is assigned a different colour. In this particular example,
further iterating the colour passing procedure does not change these group-
ings. Finally, ACP introduces logvars to obtain PRVs that represent groups
of randvars with identical colour signatures. Further, ACP replaces groups of
factors having identical colours by parfactors. Here, A and C are represented
by a PRV R(X) having a single logvar X with dom(X) = {A,C} (as shown
on the right in Fig. 3). Note that the name R is chosen arbitrarily and in
general, it is also possible to have multiple logvars within a PRV.

For more technical details on ACP, we refer the reader to Luttermann
et al. (2024a). The authors also provide detailed instructions on how the
logvars are introduced to construct the resulting PFG from the colourings.

In a situation with unknown factors being present in an FG, the ACP al-
gorithm cannot be applied to construct a lifted representation for the FG. In
the upcoming section, we introduce the LIFAGU algorithm which generalises
the ACP algorithm and is able to handle the presence of unknown factors.

3. The LIFAGU Algorithm

The semantics of an FG (or a PFG) relies on a multiplication of all factors
in the model and thus, all factors must be known to ensure a well-defined
semantics of the model. As our goal is to perform lifted inference, we have to
obtain a PFG where all potentials are known. To transform an FG containing
unknown factors into a PFG without unknown factors, we transfer potentials
from known factors to unknown factors.

We illustrate the idea of transferring potentials using the exemplary FG
depicted in Fig. 4. In this example, another individual eve is added to the
model. Like alice and bob, eve can travel, be sick, and be treated and hence,
four new randvars with three new corresponding factors are attached to the
model. However, as we might have limited data, we do not always know
the exact potential mappings for the newly introduced factors when a new
individual is added to the model and thus, we end up with a model containing
unknown factors. In the example from Fig. 4, we have three unknown factors,
denoted as f?. We can transfer the potentials of the known factors f1, f2,
and f3 to the newly introduced unknown factors f?, as it is reasonable to
assume that eve behaves the same as alice and bob as long as no evidence
suggesting the contrary is available.

In an FG containing unknown factors, the only information available to
measure the similarity of factors is the neighbouring graph structure of the

10

Epid

f0

f1 f1

f?

Sick.alice Sick.bob

Sick.eve

f2

f2

f2

f2

f?

f?

Travel.alice Travel.bob

Travel.eve

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Treat.eve.m1

Treat.eve.m2

f3 f3

f?

Figure 4: An extension of the epidemic example depicted in Fig. 1. The factors f? are
unknown. The input-output pairs of the remaining factors are again omitted for brevity.

factors. For the upcoming definitions, let NeG(v) denote the set of neighbours
of a node v (where v can be a variable node or a factor node) inG, i.e., NeG(f)
contains all randvars connected to a factor f in G and NeG(R) contains all
factors connected to a randvar R in G. If the context is clear, we omit
the subscript from NeG(v) and write Ne(v) for simplification. We start by
defining the 2-step neighbourhood of a factor f as the set containing f , all
randvars that are connected to f , as well as all factors connected to a randvar
that is connected to f . The concept of taking into account all nodes with a
maximal distance of two is based on the idea of considering a single iteration
of the colour passing procedure in the ACP algorithm.

Definition 3.1 (2-Step Neighbourhood). The 2-step neighbourhood of a
factor f in an FG G is defined as

2-stepG(f) = {R | R ∈ NeG(f)} ∪ {f ′ | ∃R : R ∈ NeG(f) ∧ f ′ ∈ NeG(R)}.

If the context is clear, we write 2-step(f) instead of 2-stepG(f).

Example 3.1. The 2-step neighbourhood of f1 in the FG depicted in Fig. 3
is given by 2-step(f1) = {A,B} ∪ {f1, f2}. By G[V ′] we denote the subgraph
of a graph G induced by a subset of nodes V ′, that is, G[V ′] contains only

11

the nodes in V ′ as well as all edges from G that connect two nodes in V ′. In
this example, G[2-step(f1)] then consists of the nodes A, B, f1, and f2, and
contains the edges A− f1, B − f1, and B − f2.

As it is currently unknown whether a general graph isomorphism test
is solvable in polynomial time, we make use of the weaker notion of indis-
tinguishable 2-step neighbourhoods instead of relying on isomorphic 2-step
neighbourhoods to ensure that LIFAGU is implementable in polynomial time.

Definition 3.2 (Indistinguishable 2-Step Neighbourhoods). Let G denote
an FG and let fi as well as fj denote two factors in G. Then, G[2-stepG(fi)]
and G[2-stepG(fj)] are indistinguishable if

1. |NeG(fi)| = |NeG(fj)| and
2. there exists a bijection τ : NeG(fi) 7→ NeG(fj) that maps every randvar

Rk ∈ NeG(fi) to a randvar Rℓ ∈ NeG(fj) such that the observed event
(evidence) for Rk and Rℓ is identical, range(Rk) = range(Rℓ), and
|NeG(Rk)| = |NeG(Rℓ)|.

Example 3.2. Take a look again at the FG shown in Fig. 3 and assume that
there is no evidence. We can check whether f1 and f2 have indistinguishable
2-step neighbourhoods: Both f1 and f2 are connected to two randvars as
Ne(f1) = {A,B} and Ne(f2) = {B,C}, thereby satisfying Item 1. Further,
A can be mapped to C with range(A) = range(C) (Boolean) and |Ne(A)| =
|Ne(C)| = 1 and B can be mapped to itself. Thus, Item 2 is satisfied and it
holds that G[2-step(f1)] and G[2-step(f2)] are indistinguishable.

Recall that our goal is to transfer potentials from known factors to un-
known factors. To do so, we need a measure of similarity between factors,
even if the underlying functions encoded by the factors are unknown. We
thus introduce the notion of possibly identical factors, that is, factors that are
indistinguishable based on their 2-step neighbourhoods. In particular, two
factors are considered possibly identical if the subgraphs induced by their
2-step neighbourhoods are indistinguishable and the underlying functions (if
known) do not differ from each other, as formalised in the next definition.

Definition 3.3 (Possibly Identical Factors). Given two factors fi and fj in
an FG G, we call fi and fj possibly identical, denoted as fi ≈ fj, if

1. G[2-stepG(fi)] and G[2-stepG(fj)] are indistinguishable, and

12

2. at least one of fi, fj is unknown, or the underlying functions of fi and
fj encode identical potential mappings.

Item 2 serves to ensure consistency when comparing factors with known
underlying functions as two factors encoding different potential mappings
can obviously not be identical.

Example 3.3. Applying the definition of possibly identical factors to f1 and
f2 from Fig. 3, we can verify that f1 and f2 are indeed possibly identical be-
cause they have indistinguishable 2-step neighbourhoods and their underlying
functions encode identical potential mappings.

We are now ready to introduce the LIFAGU algorithm, which makes use of
the notion of possibly identical factors to find known factors that are similar
to unknown factors. Algorithm 1 outlines the entire LIFAGU algorithm and
we provide a detailed explanation of each step in the following.

LIFAGU assigns colours to unknown factors based on indistinguishable
2-step neighbourhoods, proceeding as follows for an input G. As an initialisa-
tion step, LIFAGU assigns each known factor a colour based on its potentials
and each unknown factor a unique colour. Then, LIFAGU searches for pos-
sibly identical factors in two phases. In the first phase, all unknown factors
that are possibly identical are assigned the same colour, as there is no way to
distinguish them. Furthermore, LIFAGU collects for every unknown factor
fi a set Cfi of known factors possibly identical to fi. The second phase then
continues to group the unknown factors with known factors, including the
transfer of the potentials from the known factors to the unknown factors.
For every unknown factor fi, LIFAGU computes a maximal subset Cℓ

fi
⊆ Cfi

for which all elements are pairwise possibly identical. Afterwards, fi and all
fj ∈ Cℓ

fi
are assigned the same colour if a user-defined threshold is reached.

At the same time, the potentials of the factors in Cℓ
fi

are transferred to fi.
Finally, ACP is called on G, which now includes the previously set colours
for the unknown factors in G, to group both known and unknown factors.

Before we take a closer look at the threshold θ, we illustrate the steps
undertaken by the LIFAGU algorithm on the exemplary FG from Fig. 4.

Example 3.4. Consider again the FG G shown in Fig. 4 and assume there
is no evidence available, i.e., E = ∅. First, LIFAGU assigns colours to all
known factors in G according to the potential mappings encoded by their un-
derlying functions. In particular, all factors f1 receive the same colour (e.g.,

13

Algorithm 1: LIFAGU

Input : An FG G with randvars R = {R1, . . . , Rn}, known factors
F = {f1, . . . , fm}, unknown factors F ′ = {f ′

1, . . . , f
′
z}, and

evidence E = {R1 = r1, . . . , Rk = rk}, as well as a
real-valued threshold θ ∈ [0, 1].

Output: A lifted representation G′ of G.

1 Assign each fi ∈ F a colour based on its potentials;
2 Assign each f ′

i ∈ F ′ a unique colour;
3 foreach unknown factor fi ∈ F ′ do
4 Cfi ← {};
5 foreach factor fj ∈ F ∪ F ′ with fi ̸= fj do
6 if fi ≈ fj then
7 if fj is unknown then
8 Assign fj the same colour as fi;
9 else

10 Cfi ← Cfi ∪ {fj};
11 foreach set of candidates Cfi do
12 Cℓ

fi
← Maximal subset of Cfi s.t. fj ≈ fk holds for all fj, fk ∈ Cℓ

fi
;

13 if |Cℓ
fi
| / |Cfi | ≥ θ then

14 Assign all fj ∈ Cℓ
fi
the same colour as fi;

15 Assign fi the same potentials as the factors fj ∈ Cℓ
fi
;

16 G← Result from calling ACP on the modified graph G and E;

blue), all factors f2 receive the same colour (e.g., green), all factors f3 receive
the same colour (e.g., purple), and f0 receives a different colour (e.g., red).
The colourings of the known factors are shown in Fig. 5a. In the next step,
all unknown factors f? receive a unique colour and the resulting colourings are
given in Fig. 5b. Afterwards, for every unknown factor f?, LIFAGU searches
for factors that are possibly identical to f?. In this specific example, f?(Epid,
Travel.eve, Sick.eve) is possibly identical to the factors f1, f?(Treat.eve.m1,
Sick.eve, Epid) is possibly identical to f?(Treat.eve.m2, Sick.eve, Epid) as
well as to all factors f2, f?(Treat.eve.m2, Sick.eve, Epid) is possibly iden-
tical to f?(Treat.eve.m1, Sick.eve, Epid) and to all f2, and f?(Travel.eve)
is possibly identical to the factors f3. Consequently, in Line 8, LIFAGU as-
signs f?(Treat.eve.m1, Sick.eve, Epid) and f?(Treat.eve.m2, Sick.eve, Epid)
the same colour (because they are possibly identical and both unknown). The

14

Epid

f0

f1 f1

f?

Sick.alice Sick.bob

Sick.eve

f2

f2

f2

f2

f?

f?

Travel.alice Travel.bob

Travel.eve

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Treat.eve.m1

Treat.eve.m2

f3 f3

f?

(a)

Epid

f0

f1 f1

f?

Sick.alice Sick.bob

Sick.eve

f2

f2

f2

f2

f?

f?

Travel.alice Travel.bob

Travel.eve

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Treat.eve.m1

Treat.eve.m2

f3 f3

f?

(b)

Epid

f0

f1 f1

f?

Sick.alice Sick.bob

Sick.eve

f2

f2

f2

f2

f?

f?

Travel.alice Travel.bob

Travel.eve

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Treat.eve.m1

Treat.eve.m2

f3 f3

f?

(c)

Epid

f0

f1 f1

f1

Sick.alice Sick.bob

Sick.eve

f2

f2

f2

f2

f2

f2

Travel.alice Travel.bob

Travel.eve

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Treat.eve.m1

Treat.eve.m2

f3 f3

f3

(d)

Figure 5: An illustration of the steps undertaken by Alg. 1 (LIFAGU) on the input FG
depicted in Fig. 4: (a) Colouring of known factors (Line 1), (b) initial colouring of unknown
factors (Line 2), (c) refined colouring for unknown factors (Line 8), and (d) grouping of
unknown factors with known factors (Lines 14 and 15).

new colouring is shown in Fig. 5c. Simultaneously, LIFAGU collects for every
unknown factor f? a set Cf? of possibly identical known factors in Line 10:

• Cf?(Epid,Travel.eve,Sick.eve) = {f1(Epid, Travel.alice, Sick.alice), f1(Epid,
Travel.bob, Sick.bob)},

• Cf?(Treat.eve.m1,Sick.eve,Epid) = {f2(Treat.alice.m1, Sick.alice, Epid),
f2(Treat.alice.m2, Sick.alice, Epid), f2(Treat.bob.m1, Sick.bob, Epid),
f2(Treat.bob.m2, Sick.bob, Epid)},

• Cf?(Treat.eve.m2,Sick.eve,Epid) = {f2(Treat.alice.m1, Sick.alice, Epid),
f2(Treat.alice.m2, Sick.alice, Epid), f2(Treat.bob.m1, Sick.bob, Epid),
f2(Treat.bob.m2, Sick.bob, Epid)},

• Cf?(Travel.eve) = {f3(Travel.alice), f3(Travel.bob)}.

Thereafter, LIFAGU computes for every candidate set Cf? a maximal sub-
set Cℓ

f?
of pairwise possibly identical factors. Here, it holds that within each

15

Cf?, all factors are pairwise possibly identical and hence, we have Cf? = Cℓ
f?

for all unknown factors f?. Due to Cf? = Cℓ
f?
, we have |Cℓ

f?
| / |Cf? | = 1

for all unknown factors f? and thus, the if-condition in Line 13 is satisfied
independent of the choice of θ in this example. In consequence, the factors
f1 receive the same colour as f?(Epid, Travel.eve, Sick.eve) and the poten-
tials of the factors f1 are transferred to f?(Epid, Travel.eve, Sick.eve), the
factors f2 receive the same colour as f?(Treat.eve.m1, Sick.eve, Epid) (and
f?(Treat.eve.m1, Sick.eve, Epid)) and the potentials of f2 are transferred to
f?(Treat.eve.m1, Sick.eve, Epid) and f?(Treat.eve.m1, Sick.eve, Epid), and
the factors f3 receive the same colour as f?(Travel.eve) and the potentials of
f3 are transferred to f?(Travel.eve). The resulting colourings are shown in
Fig. 5d, where all unknown factors f? have been replaced by known factors.
Finally, LIFAGU calls ACP on the resulting graph G from Fig. 5d to obtain
the lifted representation of G illustrated in Fig. 2.

The purpose of the threshold θ is to control the required agreement of
known factors before grouping unknown factors with known factors as it is
possible for an unknown factor to be possibly identical to multiple known
factors having different potentials. A larger value for θ requires a higher
agreement, e.g., θ = 1 requires all candidates to have identical potentials.
Note that all known factors in Cℓ

fi
are guaranteed to have identical potentials

(because otherwise they would violate Item 2 of Definition 3.3 and hence not
be pairwise possibly identical) and thus, their potentials can be transferred
to fi. Consequently, the output of LIFAGU is guaranteed to contain only
known factors and hence, LIFAGU ensures a well-defined semantics if Cℓ

fi
is

non-empty for each unknown factor fi and the threshold is sufficiently small
(e.g., zero) to group each unknown factor with at least one known factor.1

Theorem 3.1. Given that for every unknown factor fi there is at least one
known factor that is possibly identical to fi in an FG G, LIFAGU is able to
replace all unknown potentials in G by known potentials.

Proof. Let G be an FG with known factors F = {f1, . . . , fm} and unknown
factors F ′ = {f ′

1, . . . , f
′
z} such that for each unknown factor fi ∈ F ′ there

exists at least one known factor fj ∈ F such that fi ≈ fj. Then, it is
guaranteed for each unknown factor fi that Line 10 in Alg. 1 is executed at

1As the semantics of an FG is given by a product over its factors, the semantics of the
FG is only well-defined if all input-output mappings of the factors are known.

16

least once and thus Cfi is non-empty for all unknown factors fi. Afterwards,
as Cfi ̸= ∅ holds for all unknown factors fi, it holds that in Line 12 there is
at least one element in Cℓ

fi
for every unknown factor fi. Therefore, if we set

θ = 0, the if-condition in Line 13 passes successfully for each unknown factor
fi, resulting both in fi being assigned the same colour as at least one known
factor fj ∈ Cℓ

fi
as well as in the transfer of fj’s potentials to fi.

The threshold θ defines the trade-off between transferring as much po-
tentials from known factors to unknown factors as possible and avoiding
incorrect groupings of unknown factors. While a small threshold θ might be
able to provide guarantees about a well-defined semantics of the output of
LIFAGU, a larger threshold θ might be able to reduce incorrectly grouped
unknown factors. In particular, for an unknown factor fi, it is generally
possible that Cℓ

fi
is not unique, i.e., there are multiple maximal subsets of

candidates of known factors fi might be grouped with. The threshold θ can
be used to avoid such scenarios by setting θ > 0.5.

Theorem 3.2. Let Cfi be the set of known factors possibly identical to an
unknown factor fi and Cℓ

fi
a maximal subset of Cfi with fj ≈ fk for all fj,

fk ∈ Cℓ
fi
. Then, Cℓ

fi
is guaranteed to be unique if |Cℓ

fi
| / |Cfi | > 0.5.

Proof. Let Cfi be a set of known factors possibly identical to an unknown
factor fi, C

ℓ
fi
⊆ Cfi a maximal subset such that fj ≈ fk holds for all fj, fk ∈

Cℓ
fi
, and |Cℓ

fi
|/ |Cfi | > 0.5. For the sake of contradiction, assume that there is

another maximal subset Cℓ′

fi
⊆ Cfi containing only pairwise possibly identical

factors with Cℓ′

fi
̸= Cℓ

fi
and |Cℓ′

fi
| = |Cℓ

fi
|. As |Cℓ

fi
| > 0.5 · |Cfi | holds, there

must be a factor, say fj, with fj ∈ Cℓ′

fi
∩ Cℓ

fi
. Consequently, fj is pairwise

possibly identical to all fk ∈ Cℓ′

fi
and to all fl ∈ Cℓ

fi
, and as all fk and fl are

known, this implies that both all fk as well as all fl have the same potentials
as fj, meaning the fk and fl must be pairwise possibly identical as well. This
implies that Cℓ′

fi
= Cℓ

fi
because if there were a factor fr with fr ∈ Cℓ′

fi
and

fr /∈ Cℓ
fi
, then Cℓ

fi
can not be maximal as fr is pairwise possibly identical to

all fl ∈ Cℓ
fi
. A contradiction to our assumption that Cℓ′

fi
̸= Cℓ

fi
.

To close this section, we prove that LIFAGU is a generalisation of ACP,
i.e., both algorithms compute the same result for input FGs containing only
known factors (independent of θ because θ only affects unknown factors).

Theorem 3.3. Given an FG that contains only known factors, ACP and
LIFAGU output identical groupings of randvars and factors, respectively.

17

Proof. Let G be an FG containing only known factors. Then, only Lines 1
and 16 of Alg. 1 are executed—which is equivalent to calling ACP on G.

Before we evaluate the practical performance of LIFAGU empirically, we
extend LIFAGU to incorporate background knowledge about factors belong-
ing to the same individual object in the upcoming section.

4. Incorporating Background Knowledge in LIFAGU

We start this section by first defining the concept of background knowl-
edge and afterwards elaborate on how given background knowledge can be
incorporated into LIFAGU. Informally speaking, in our setting, background
knowledge specifies which factors belong to the same individual object.

Definition 4.1 (Background Knowledge). Let G denote an FG with known
factors F = {f1, . . . , fm} and unknown factors F ′ = {f ′

1, . . . , f
′
z}. Then,

background knowledge K = ⟨K1, . . . ,Kd⟩ is a collection of sets of factors
K1, . . . ,Kd such that Ki ⊆ F ∪ F ′, i ∈ {1, . . . , d}, specifies a set of factors
belonging to the same individual i. We say that K is valid if Ki ∩Kj = ∅
for all pairs of Ki ∈ K and Kj ∈ K with i ̸= j.

As background knowledge tells us which factors belong to the same in-
dividual, we are only interested in valid background knowledge, i.e., back-
ground knowledge in which each factor belongs to at most one individual.
From now on, we therefore use the term background knowledge to refer to
valid background knowledge only. Note that background knowledge might
not be available for every individual and it is also possible that there is no
background knowledge available at all. In general, there are (at least) two
possible approaches to make use of background knowledge in LIFAGU:

1. Group unknown factors with known factors solely based on the available
background knowledge instead of searching for a maximal subset of
known factor candidates which is then used to group unknown factors
with known factors if a given threshold is reached.

2. Make the decision of whether an unknown factor should be grouped
with a set of known factors based on a combination of the threshold
and background knowledge.

Using only the available background knowledge to group unknown factors
with known factors is mostly not desirable because background knowledge

18

Epid

f0

f1 f1

f ′
1 f ′

1

Sick.alice Sick.bob

Sick.dave Sick.eve

f2

f2

f2

f2

f ′
2

f ′
2

f?

f?

Travel.alice Travel.bob

Travel.dave Travel.eve

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Treat.dave.m1

Treat.dave.m2

Treat.eve.m1

Treat.eve.m2

f3 f3

f ′
3 f ′

3

Figure 6: A slightly modified and extended version of the epidemic example depicted in
Fig. 4. The factors f? are unknown and the input-output pairs of the remaining factors are
again omitted for brevity. Note that the factors f1 encode a different underlying function
than the factors f ′

1 and the factors f2 encode a different underlying function than f ′
2.

often is limited. Combining the threshold with background knowledge, how-
ever, possibly reduces the ambiguity for possible transfers of potentials from
known factors to unknown factors. We next explain how the threshold can
be combined with background knowledge in LIFAGU to determine which set
of known factors an unknown factor should be grouped with.

Let us take a look at the FG G depicted in Fig. 6, where four indi-
viduals alice, bob, dave, and eve are part of the model. In this example,
alice and bob belong to the same group of identically behaving individuals
as they share the same potentials for the factors f1, f2, and f3, i.e., it holds
that f1(Travel.alice, Sick.alice, Epid) = f1(Travel.bob, Sick.bob, Epid) for
all possible assignments of the arguments of the factors f1, and analogously
for all factors f2 and f3. Further, let us assume that f ′

1 ̸= f1, f
′
2 ̸= f2, and

f ′
3 ̸= f3 hold—that is, dave belongs to a different group than alice and bob
(formally, this can be encoded in a PFG by using constraints). Addition-
ally, G contains another individual eve, for which we have only limited data
available. In particular, we do not know the exact potentials for the fac-
tors f?(Treat.eve.m1, Sick.eve, Epid) and f?(Treat.eve.m2, Sick.eve, Epid).
However, we do know the potentials for f ′

1(Epid, Travel.eve, Sick.eve) and

19

for f ′
3(Travel.eve), and for the sake of the example, let us assume that we

are also given the background knowledge K = ⟨K1,K2⟩ with

• K1={f ′
1(Epid,Travel.eve,Sick.eve),f?(Treat.eve.m1,Sick.eve,Epid),

f?(Treat.eve.m2,Sick.eve,Epid),f ′
3(Travel.eve)} and

• K2 = {f ′
1(Epid, Travel.dave, Sick.dave), f ′

2(Treat.dave.m1, Sick.dave,
Epid), f ′

2(Treat.dave.m2, Sick.dave, Epid), f ′
3(Travel.dave)}.

In other words, we know which factors belong to the individuals dave and
eve but we do not have any information about the remaining factors in G.

Since it holds that dave and eve share the same potentials for the factors
f ′
1, i.e., f ′

1(Travel.dave, Sick.dave, Epid) = f ′
1(Travel.eve, Sick.eve, Epid)

for all possible assignments of the arguments of the factors f ′
1, we know

that with respect to f ′
1, dave and eve belong to a group of identically behav-

ing individuals (analogously for f ′
3). However, we do not know whether the

factors f? should be grouped with the factors f2, f
′
2, or none of them. At this

point, we can apply our background knowledge K: As dave and eve share
the same potentials for the factors f ′

1 as well as for f ′
3 and we know that the

factors f? belong to eve as well as that the factors f ′
2 belong to dave, we

might want to decide to group the factors f? with the factors f ′
2 to achieve

that dave and eve are grouped together.
Generally, we thus aim to prefer grouping an unknown factor with a group

of known factors that is supported by the available background knowledge.
The next definition formalises the idea of supporting background knowledge.

Definition 4.2 (Supporting Background Knowledge). Let K= ⟨K1, . . . ,Kd⟩
be given background knowledge, Cfi a set of known factors possibly identical
to an unknown factor fi, and Cs

fi
a subset of Cfi such that fj ≈ fk holds for

all fj, fk ∈ Cs
fi
. We say that Cs

fi
is supported by K if

1. there exists no set Ki ∈ K such that fi ∈Ki, or

2. there exists a set Ki ∈ K such that fi ∈Ki, and

i. for all known factors fℓ ∈Ki it holds that there exists at most one
set Ko ∈ K, Ko ̸= Ki, which contains a factor having the same
colour as fℓ and all factors in Cs

fi
have the same colour as fℓ, and

ii. the set Ko is the same set for all known factors fℓ ∈Ki.

The notion of supporting background knowledge can be integrated into
LIFAGU by searching for subsets of candidates of known factors that are

20

pairwise possibly identical and that are supported by the given background
knowledge instead of searching for a maximal subset of candidates. More
specifically, in Line 12 in Alg. 1, LIFAGU now computes all subsets Cs

fi
⊆ Cfi

such that fj ≈ fk holds for all fj, fk ∈ Cs
fi
and then checks for all subsets Cs

fi

whether they are supported by the given background knowledge. If no subset
is supported by the given background knowledge, LIFAGU proceeds as before
and takes the maximal subset Cℓ

fi
⊆ Cfi for the transfer of potentials from

known factors to unknown factors. Otherwise (i.e., in case at least one of
the subsets Cs

fi
is supported by the given background knowledge), LIFAGU

takes the maximal subset of all subsets that are supported by the given
background knowledge for the transfer of potentials from known factors to
unknown factors. The idea behind this approach is that LIFAGU proceeds
as usual if background knowledge is either missing or does not uniquely hint
at a specific individual whose known factors should be used for grouping. In
cases where the known factors of the individual to which fi belongs might
be grouped with known factors from various other individuals, we do not
know which of these individuals should be chosen for grouping. Thus, we
require that the known factors of the individual to which fi belongs might
be grouped with the known factors of a unique other individual to make use
of given background knowledge.

Note that a situation like the one we considered in our toy example from
Fig. 6 is abundant in many real-world applications. For example, when a new
patient arrives at a hospital, there is limited data available as not all measure-
ments are taken immediately, i.e., it is conceivable that a first examination
determines the current blood pressure of the patient while measurements for
other attributes are not conducted yet. Background knowledge in combina-
tion with partial measurements can help assigning the new patient to a group
of indistinguishable patients, thereby allowing to draw tentative conclusions
about which measurement to take next or which treatment to apply.

So far, we have introduced LIFAGU and analysed its theoretical proper-
ties. We have also extended LIFAGU to incorporate background knowledge.
Next, we investigate the practical performance of LIFAGU empirically.

5. Empirical Evaluation

In this section, we present the results of the empirical evaluation for
LIFAGU. To evaluate the performance of LIFAGU, we start with a non-
parameterised FG G where all factors are known, serving as our ground

21

truth. Afterwards, we remove the potential mappings for 5 to 20 percent
of the factors in G, yielding an incomplete FG G′ on which LIFAGU is run
to obtain a PFG GLIFAGU. Each factor f ′ whose potentials are removed is
chosen randomly under the constraint that there exists at least one other
factor with known potentials that is possibly identical to f ′. This constraint
corresponds to the assumption that there exists at least one group to which
a new individual can be added and it ensures that after running LIFAGU,
probabilistic inference can be performed for evaluation purposes. Clearly, in
our evaluation setting, there is not only a single new individual but instead
a set of new individuals, given by the set of factors whose potentials are
missing. There is no background knowledge available in our experiments.
We use a parameter d = 2, 4, 8, 16, 32, 64, 128, 256 to control the size of the
FG G (and thus, the size of G′). More precisely, for each choice of d, we
evaluate multiple graph structures for input FGs, which contain between 2d
and 3d randvars (and factors, respectively). The potentials of the factors are
randomly generated such that the ground truth G contains between three
and five (randomly chosen) cohorts of randvars which behave identically and
thus should be grouped together. We evaluate different choices for the sizes
of the cohorts: There is one cohort which contains a proportion of p ∈
{0.2, 0.3, 0.5, 0.7, 0.9} of all randvars in G whereas the other cohorts share the
remaining proportion of 1− p of the randvars from G uniformly at random.

We set θ = 0 to ensure that each unknown factor is grouped with at
least one known factor to be able to perform lifted probabilistic inference on
GLIFAGU for evaluation. To assess the error made by LIFAGU for each choice
of d, we pose between three and four different queries to the ground truth
G and to GLIFAGU, respectively. For each query, we compute the Kullback-
Leibler divergence (KLD) (Kullback and Leibler, 1951) between the resulting
probability distributions for the ground truth G and GLIFAGU to measure the
similarity of the query results. The KLD measures the difference between
two distributions P and Q and is defined as

KLD(P ∥ Q) =
∑
x

P (x) · log
(
P (x)

Q(x)

)
. (3)

If the distributions P and Q are identical, the KLD is zero and the larger
the KLD, the more P and Q differ from each other.

In Figs. 7 and 8, we present boxplots showing the distributions of the
measured KLDs for the different choices of d and p. We can observe that in

22

0.0000

0.0025

0.0050

0.0075

0.0100

4 8 16 32 64 128 256
d

K
L
D

p = 0.2 p = 0.3 p = 0.5

p = 0.7 p = 0.9

(a)

0.0000

0.0025

0.0050

0.0075

0.0100

4 8 16 32 64 128 256
d

K
L
D

p = 0.2 p = 0.3 p = 0.5

p = 0.7 p = 0.9

(b)

Figure 7: (a) A boxplot showing the measured KLDs for input FGs where roughly 5
percent of the factors are unknown, and (b) a boxplot showing the measured KLD for
input FGs where roughly 10 percent of the factors are unknown.

every scenario, the KLD is close to zero, indicating that the query results for
GLIFAGU are close to the query results for the ground truth G in practice.
Interestingly, there are no major differences between different choices of the
parameters d and p. Even though there are some choices of d and p having
slightly larger KLDs than other choices for d and p, there are especially no
systematic differences between the distribution of the cohort sizes. Note that
even the largest values for the KLD are still below 0.01 here.

Given our assumptions, a new individual actually belongs to a cohort
and most cohorts behave not completely different. So normally, we trade off
accuracy of query results for the ability to perform inference, which otherwise
would not be possible at all. If the semantics of the model cannot be fixed,
missing potentials need to be guessed to be able to perform inference at all,
probably resulting in worse errors. As we basically perform unsupervised
clustering, errors might happen whenever unknown factors are grouped with

23

0.0000

0.0025

0.0050

0.0075

0.0100

4 8 16 32 64 128 256
d

K
L
D

p = 0.2 p = 0.3 p = 0.5

p = 0.7 p = 0.9

(a)

0.0000

0.0025

0.0050

0.0075

0.0100

4 8 16 32 64 128 256
d

K
L
D

p = 0.2 p = 0.3 p = 0.5

p = 0.7 p = 0.9

(b)

Figure 8: (a) A boxplot showing the measured KLDs for input FGs where roughly 15
percent of the factors are unknown, and (b) a boxplot showing the measured KLD for
input FGs where roughly 20 percent of the factors are unknown.

known factors. The error might be further reduced by increasing the effort
when searching for known factors that are possible candidates for grouping
with an unknown factor—for example, it is conceivable to increase the size
of the neighbourhood during the search for possible identical factors at the
expense of a higher run time expenditure for LIFAGU.

In addition to the error measured by the KLD, we also report the run
times of variable elimination on G and lifted variable elimination on the
PFG computed by LIFAGU, i.e., GLIFAGU. The average run times over all
scenarios are shown in Fig. 9. As expected, lifted variable elimination is faster
than variable elimination for larger graphs and the run time of lifted variable
elimination increases more slowly with increasing graph sizes than the run
time of variable elimination. Hence, LIFAGU not only allows to perform
probabilistic inference at all, but also speeds up inference by allowing for
lifting probabilistic inference. Note that there are on average 17 different

24

20

40

60

0 100 200
d

ti
m
e
(m

s)

Lifted Variable Elimination

Variable Elimination

Figure 9: The average run times of variable elimination and lifted variable elimination.

groups of randvars over all settings with the largest group size being 205
(for the setting of d = 256), i.e., there are a lot of small groups (of size
one) which diminish the advantage of lifted variable elimination over variable
elimination. We could also obtain a more compact PFG by merging groups
that are not fully identical but similar to a given extent such that the resulting
PFG contains less different groups at the cost of a lower accuracy for query
results. Obtaining a more compact PFG would most likely result in a higher
speedup of lifted variable elimination compared to variable elimination.

Finally, we remark that assuming there exists at least one group to which
a new individual can be added is clearly a strong assumption that might
not hold in practical settings. We made this assumption for our experiments
to guarantee a well-defined semantics of the model, as otherwise query an-
swering would not be possible at all and hence, comparing KLDs and run
times could not be performed. Despite this rather strong assumption, the
experiments provide a first impression for the order of magnitude of the error
induced by LIFAGU. The results on the synthetic data used in this section
are promising and suggest that LIFAGU performs well in practice.

6. Conclusion

We introduce the LIFAGU algorithm to construct a lifted representation,
denoted as a PFG, for an FG that possibly contains factors whose under-
lying potential mappings are unknown. LIFAGU is a generalisation of the
ACP algorithm and allows to transfer potentials from known factors to un-
known factors by identifying indistinguishable subgraph structures. Under
the assumption that for every unknown factor there exists at least one known
factor such that they have an indistinguishable surrounding graph structure,

25

LIFAGU is able to replace all unknown potential mappings in an FG by
known potential mappings. To reduce ambiguity when grouping unknown
factors with known factors, we introduce the concept of supporting back-
ground knowledge and show how it can be integrated into LIFAGU.

In future work, we aim to further generalise the ACP algorithm to allow
for a small deviation between the potentials of two known factors f1 and f2
for f1 and f2 to be considered identical while at the same time maintaining
a bounded error on probabilistic queries posed to the lifted model.

Acknowledgements

This work is partially funded by the BMBF project AnoMed 16KISA057
and 16KISA050K.

References

Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S., 2013. Exploiting
Symmetries for Scaling Loopy Belief Propagation and Relational Training.
Machine Learning 92, 91–132.

Braun, T., Möller, R., 2016. Lifted Junction Tree Algorithm, in: Proceedings
of KI 2016: Advances in Artificial Intelligence (KI-16), Springer. pp. 30–42.

Braun, T., Möller, R., 2018. Parameterised Queries and Lifted Query An-
swering, in: Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence (IJCAI-2018), IJCAI Organization. pp.
4980–4986.

De Salvo Braz, R., Amir, E., Roth, D., 2005. Lifted First-Order Probabilistic
Inference, in: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI-05), Morgan Kaufmann Publishers Inc..
pp. 1319–1325.

De Salvo Braz, R., Amir, E., Roth, D., 2006. MPE and Partial Inver-
sion in Lifted Probabilistic Variable Elimination, in: Proceedings of the
Twenty-First National Conference on Artificial Intelligence (AAAI-06),
AAAI Press. pp. 1123–1130.

26

Frey, B.J., Kschischang, F.R., Loeliger, H.A., Wiberg, N., 1997. Factor
Graphs and Algorithms, in: Proceedings of the Thirty-Fifth Annual Aller-
ton Conference on Communication, Control, and Computing, Allerton
House. pp. 666–680.

Gehrke, M., Möller, R., Braun, T., 2020. Taming Reasoning in Temporal
Probabilistic Relational Models, in: Proceedings of the Twenty-Fourth
European Conference on Artificial Intelligence (ECAI-20), IOS Press. pp.
2592–2599.

Hoffmann, M., Braun, T., Möller, 2022. Lifted Division for Lifted Hugin Be-
lief Propagation, in: Proceedings of the Twenty-Fifth International Con-
ference on Artificial Intelligence and Statistics (AISTATS-22), PMLR. pp.
6501–6510.

Kersting, K., Ahmadi, B., Natarajan, S., 2009. Counting Belief Propaga-
tion, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence (UAI-09), AUAI Press. pp. 277–284.

Kisyński, J., Poole, D., 2009. Constraint Processing in Lifted Probabilistic
Inference, in: Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence (UAI-09), AUAI Press. pp. 293–302.

Kschischang, F.R., Frey, B.J., Loeliger, H.A., 2001. Factor Graphs and the
Sum-Product Algorithm. IEEE Transactions on Information Theory 47,
498–519.

Kullback, S., Leibler, R.A., 1951. On Information and Sufficiency. The
Annals of Mathematical Statistics 22, 79–86.

Luttermann, M., Braun, T., Möller, R., Gehrke, M., 2024a. Colour Passing
Revisited: Lifted Model Construction with Commutative Factors, in: Pro-
ceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence
(AAAI-24), AAAI Press. pp. 20500–20507.

Luttermann, M., Hartwig, M., Braun, T., Möller, R., Gehrke, M., 2024b.
Lifted Causal Inference in Relational Domains, in: Proceedings of the
Third Conference on Causal Learning and Reasoning (CLeaR-2024),
PMLR. pp. 827–842.

27

Luttermann, M., Machemer, J., Gehrke, M., 2024c. Efficient Detection of
Commutative Factors in Factor Graphs, in: Proceedings of the Twelfth
International Conference on Probabilistic Graphical Models (PGM-2024),
PMLR. pp. 38–56.

Luttermann, M., Machemer, J., Gehrke, M., 2024d. Efficient Detection of
Exchangeable Factors in Factor Graphs, in: Proceedings of the 37th Inter-
national FLAIRS Conference (FLAIRS-24), Florida Online Journals.

Luttermann, M., Möller, R., Gehrke, M., 2023. Lifting Factor Graphs with
Some Unknown Factors, in: Proceedings of the Seventeenth European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU-23), Springer. pp. 337–347.

Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P., 2008.
Lifted Probabilistic Inference with Counting Formulas, in: Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08),
AAAI Press. pp. 1062–1068.

Niepert, M., Van den Broeck, G., 2014. Tractability through Exchangeability:
A New Perspective on Efficient Probabilistic Inference, in: Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14),
AAAI Press. pp. 2467–2475.

Poole, D., 2003. First-Order Probabilistic Inference, in: Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03), Morgan Kaufmann Publishers Inc.. pp. 985–991.

Singla, P., Domingos, P., 2008. Lifted First-Order Belief Propagation, in:
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelli-
gence (AAAI-08), AAAI Press. pp. 1094–1099.

Taghipour, N., Fierens, D., Davis, J., Blockeel, H., 2013. Lifted Variable
Elimination: Decoupling the Operators from the Constraint Language.
Journal of Artificial Intelligence Research 47, 393–439.

Weisfeiler, B., Leman, A.A., 1968. The Reduction of a Graph to Canonical
Form and the Algebra which Appears Therein. NTI, Series 2, 12–16. En-
glish translation by Grigory Ryabov available at https://www.iti.zcu.cz/
wl2018/pdf/wl paper translation.pdf.

28

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

	Introduction
	Preliminaries
	Factor Graphs and Parameterised Factor Graphs
	The Advanced Colour Passing Algorithm

	The LIFAGU Algorithm
	Incorporating Background Knowledge in LIFAGU
	Empirical Evaluation
	Conclusion

