Lifting Factor Graphs with Some Unknown
Factors

Malte Luttermann1’2[0009_0005_8591_6839], Ralf 1\/[6Her1,2[0000—0002—1174—3323]7
and Marcel Gehrkel[0000_0001_9056_7673]

! Institute of Information Systems, University of Liibeck, Germany
2 German Research Center for Artificial Intelligence (DFKI), Liibeck, Germany
{luttermann,moeller,gehrke}@ifis.uni-luebeck.de

Abstract. Lifting exploits symmetries in probabilistic graphical models
by using a representative for indistinguishable objects, allowing to carry
out query answering more efficiently while maintaining exact answers.
In this paper, we investigate how lifting enables us to perform proba-
bilistic inference for factor graphs containing factors whose potentials
are unknown. We introduce the Lifting Factor Graphs with Some Un-
known Factors (LIFAGU) algorithm to identify symmetric subgraphs in
a factor graph containing unknown factors, thereby enabling the trans-
fer of known potentials to unknown potentials to ensure a well-defined
semantics and allow for (lifted) probabilistic inference.

1 Introduction

To perform inference in a probabilistic graphical model, all potentials of every
factor are required to be known to ensure a well-defined semantics of the model.
However, in practice, scenarios arise in which not all factors are known. For ex-
ample, consider a database of a hospital containing patient data and assume a
new patient arrives and we want to include them into an existing probabilistic
graphical model such as a factor graph (FG). Clearly, not all attributes of the
database are measured for every new patient, i.e., there are some values missing,
resulting in an FG with unknown factors and ill-defined semantics when includ-
ing a new patient in an existing FG. Therefore, we aim to add new patients to
an existing group of indistinguishable patients to treat them equally in the FG,
thereby allowing for the imputation of missing values under the assumption that
there exists such a group for which all values are known. In particular, we study
the problem of constructing a lifted representation having well-defined semantics
for an FG containing unknown factors—that is, factors whose mappings from
input to output are unknown. In probabilistic inference, lifting exploits symme-
tries in a probabilistic graphical model, allowing to carry out query answering
more efficiently while maintaining exact answers [12]. The main idea is to use a
representative of indistinguishable individuals for computations. By lifting the
probabilistic graphical model, we ensure a well-defined semantics of the model
and allow for tractable probabilistic inference with respect to domain sizes.

2 Malte Luttermann, Ralf Moller, and Marcel Gehrke

Previous work on constructing a lifted representation builds on the Weisfeiler-
Leman algorithm [I5] which incorporates a colour passing procedure to detect
symmetries in a graph, e.g. to test for graph isomorphism. To construct a lifted
representation for a given FG where all factors are known, the colour pass-
ing (CP) algorithm (originally named “CompressFactorGraph”) [II7] is com-
monly used. Having obtained a lifted representation, algorithms performing lifted
inference can be applied. A widely used algorithm for lifted inference is the lifted
variable elimination algorithm, first introduced by Poole [13] and afterwards re-
fined by many researchers to reach its current form [3/4U8/TTT4]. Another promi-
nent algorithm for lifted inference is the lifted junction tree algorithm [2], which
is designed to handle sets of queries instead of single queries.

To encounter the problem of constructing a lifted representation for an FG
containing unknown factors, we introduce the Lifting Factor Graphs with Some
Unknown Factors (LIFAGU) algorithm, which is a generalisation of the CP algo-
rithm. LIFAGU is able to handle arbitrary FGs, regardless of whether all factors
are known or not. By detecting symmetries in an FG containing unknown factors,
LIFAGU generates the possibility to transfer the potentials of known factors to
unknown factors to eliminate unknown factors from an FG. We show that, under
the assumption that for every unknown factor there is at least one known factor
having a symmetric surrounding graph structure to it, all unknown potentials
in an FG can be replaced by known potentials. Thereby, LIFAGU ensures a
well-defined semantics of the model and allows for lifted probabilistic inference.

The remaining part of this paper is structured as follows. Section [2]introduces
necessary background information and notations. We first briefly recapitulate
FGs, afterwards define parameterised factor graphs (PFGs), and then describe
the CP algorithm as a foundation for LIFAGU. Afterwards, in Section [3] we
introduce LIFAGU as an algorithm to obtain a lifted representation for an FG
that possibly contains unknown factors. We present the results of our empirical
evaluation in Section Ml before we conclude in Section [

2 Preliminaries

In this section, we begin by defining FGs as a propositional representation for
a joint probability distribution between random variables (randvars) and then
introduce PFGs, which combine probabilistic models and first-order logic. There-
after, we describe the well-known CP algorithm to lift a propositional model, i.e.,
to transform an FG into a PFG with equivalent semantics.

2.1 Factor Graphs and Parameterised Factor Graphs

An FG is an undirected graphical model to represent a full joint probability
distribution between randvars [9]. In particular, an FG is a bipartite graph that
consists of two disjoint sets of nodes (variable nodes and factor nodes) with
edges between a variable node R and a factor node f if the factor f depends
on R. A factor is a function that maps its arguments to a positive real number

Lifting Factor Graphs with Some Unknown Factors 3

Travel.bob

hoon

Fig.1: An FG for an epidemic example [6] with two individuals alice and bob.
The input-output pairs of the factors are omitted for simplification.

Treat.bob.ms

(called potential). The semantics of an FG is given by P(Ry,...,R,) = % I f
with Z being the normalisation constant. Figure [1] shows an FG representing
an epidemic example with two individuals (alice and bob) as well as two possi-
ble medications (m; and my) for treatment. For each individual, there are two
Boolean randvars Sick and Travel, indicating whether the individual is sick and
travels, respectively. Moreover, there is another Boolean randvar Treat for each
combination of individual and medication, specifying whether the individual is
treated with the medication. The Boolean randvar Epid states whether an epi-
demic is present. Although the labelling of the nodes may suggest so, there is no
explicit representation of individuals in the graph structure of the propositional
FG. The names of the nodes only serve for the reader’s understanding.

Clearly, the size of the FG increases with an increasing number of individ-
uals even though it is not necessary to distinguish between individuals because
there are symmetries in the model (the factor fi occurs two times and the factor
f2 occurs four times). In other words, the probability of an epidemic does not
depend on knowing which specific individuals are being sick, but only on how
many individuals are being sick. To exploit such symmetries in a model, PFGs
can be used. We define PFGs, first introduced by Poole [13], based on the defini-
tions given by Gehrke et al. [5]. PFGs combine first-order logic with probabilistic
models, using logical variables (logvars) as parameters in randvars to represent
sets of indistinguishable randvars, forming parameterised randvars (PRVs).

Definition 1 (Logvar, PRV, Event). Let R be a set of randvar names, L
a set of logvar names, @ a set of factor names, and D a set of constants. All
sets are finite. Each logvar L has a domain D(L) C D. A constraint is a tuple
(X,Cx) of a sequence of loguars X = (X*,...,X") and a set Cy C x*_D(X;).
The symbol T for C marks that no restrictions apply, i.e., Cx = x_D(X;).
A PRV R(Ly,...,Lyp), n > 0, is a syntactical construct of a randvar R € R
possibly combined with logvars L1, ..., L, € L to represent a set of randvars. If

4 Malte Luttermann, Ralf Moller, and Marcel Gehrke

=

]
Fig.2: A PFG corresponding to the lifted representation of the FG depicted in
Fig. The input-output pairs of the parfactors are again omitted for brevity.

n = 0, the PRV is parameterless and forms a propositional randvar. A PRV A
(or logvar L) under constraint C is given by Ajc (Lic). We may omit |T in
At or Lit. The term R(A) denotes the possible values (range) of a PRV A. An
event A = a denotes the occurrence of PRV A with range value a € R(A) and
we call a set of events E = {A; = ay,...,Ax = ar} evidence.

As an example, consider R = {Epid, Travel, Sick, Treat} and L = {X, M} with
D(X) = {alice,bob} (people), D(M) = {m1,m2} (medications), combined into
Boolean PRVs Epid, Travel(X), Sick(X), and Treat(X, M).

A parametric factor (parfactor) describes a function, mapping argument val-
ues to positive real numbers (potentials), of which at least one is non-zero.

Definition 2 (Parfactor, Model, Semantics). We denote a parfactor g by
¢p(A)jc with A = (Aq,...,An) a sequence of PRVs, ¢ : x7_ | R(A;) — RY a
function with name ¢ € @, and C a constraint on the logvars of A. We may
omit |T in ¢(A)r. The term lv(Y) refers to the logvars in some element Y,
a PRV, a parfactor, or sets thereof. The term gr(Y|c) denotes the set of all
instances of Y w.r.t. constraint C. A set of parfactors {g;}"_, forms a PFG G.
The semantics of G is given by grounding and building a full joint distribution.
With Z as the normalisation constant, G represents Pg = % HngT(G) f.

For example, Fig. [2| shows a PFG G = {g;}?_, with go = ¢o(Epid)|T, g1 =
¢1(Travel(X), Sick(X), Epid) T, and go = ¢o(Treat(X, M), Sick(X), Epid)|T.
The PFG illustrated in Fig. 2] is a lifted representation of the FG shown in
Fig. [1] Note that the definition of PFGs also includes FGs, as every FG is a
PFG containing only parameterless randvars.

2.2 The Colour Passing Algorithm

The CP algorithm [II7] constructs a lifted representation for an FG where all
factors are known. As LIFAGU generalises CP, we briefly recap how the CP
algorithm works. The idea is to find symmetries in an FG based on potentials
of factors, ranges and evidence of randvars, as well as on the graph structure.
Each randvar is assigned a colour depending on its range and evidence, mean-
ing that randvars with identical ranges and identical evidence are assigned the

Lifting Factor Graphs with Some Unknown Factors 5

Fig. 3: The colour passing procedure of the CP algorithm on an exemplary input
FG containing three Boolean randvars without evidence and two factors with
identical potentials. The example has been introduced by Ahmadi et al. [IJ.

same colour, and each factor is assigned a colour depending on its potentials,
i.e., factors with the same potentials get the same colour. The colours are then
passed from every randvar to its neighbouring factors and vice versa. Passing
colours around is repeated until the groupings of identical colours do not change
anymore. In the end, randvars and factors, respectively, are grouped together
based on their colour signatures.

Figure [3] depicts the procedure of the CP algorithm on a simple FG. The two
factors ¢, and ¢ share identical potentials in this example. As all three randvars
are Boolean and there is no evidence available, A, B, and C' are assigned the
same colour (e.g., green). Furthermore, the potentials of ¢; and ¢o are identical,
so they are assigned the same colour (e.g., purple). The colours are then passed
from randvars to factors: ¢; receives two times the colour green from A and B and
@2 receives two times the colour green from B and C. Afterwards, ¢; and ¢5 are
recoloured according to the colours they received from their neighbours. Since
both ¢ and ¢ received the same colours, they are assigned the same colour
during recolouring (e.g., purple). The colours are then passed from factors to
randvars. During this step, not only the colours are shared but also the position
of the randvars in the argument list of the corresponding factor. Thus, A receives
a tuple (purple, 1) from ¢;, B receives (purple,2) from ¢; and (purple,2) from
¢2, and C receives (purple, 1) from ¢5. Building on these new colour signatures,
the randvars are recoloured such that A and C' receive the same colour while
B is assigned a different colour. Iterating the colour passing procedure does not
change these groupings and thus we obtain the PFG shown on the right in Fig. [3]

When facing a situation with unknown factors being present in an FG, the
CP algorithm cannot be applied to construct a lifted representation for the FG.
In the upcoming section, we introduce the LIFAGU algorithm which generalises
the CP algorithm and is able to handle the presence unknown factors.

3 The LIFAGU Algorithm

As our goal is to perform lifted inference, we have to obtain a PFG where all
potentials are known. To transform an FG containing unknown factors into a

6 Malte Luttermann, Ralf Moller, and Marcel Gehrke

PFG without unknown factors, we transfer potentials from known factors to
unknown factors. For example, consider again the FG depicted in Fig. [I] and
assume that another individual, say eve, is added to the model. Like alice and
bob, eve can travel, be sick, and be treated and hence, four new randvars with
three new corresponding factors are attached to the model. However, as we might
have limited data, we might not always know the exact potentials for the newly
introduced factors when a new individual is added to the model and thus, we end
up with a model containing unknown factors. In this example, we can transfer
the potentials of the known factors f; and fs to the newly introduced unknown
factors, as it is reasonable to assume that eve behaves the same as alice and bob
as long as no evidence suggesting the contrary is available.

In an FG containing unknown factors, the only information available to mea-
sure the similarity of factors is the neighbouring graph structure of the factors.
For the upcoming definitions, let Neg(v) denote the set of neighbours of a node v
(variable node or factor node) in G, i.e., Neg(f) contains all randvars connected
to a factor f in G and Neg(R) contains all factors connected to a randvar R in
G. If the context is clear, we omit the subscript from Neg(v) and write Ne(v)
for simplification. We start by defining the 2-step neighbourhood of a factor f
as the set containing all randvars that are connected to f as well as all factors
connected to a randvar that is connected to f. The concept of taking into ac-
count all nodes with a maximal distance of two is based on the idea of a single
iteration of the colour passing procedure.

Definition 3 (2-Step Neighbourhood). The 2-step neighbourhood of a fac-
tor f in an FG G is defined as

2-stepa(f) = {R| R € Neg(f)}U{f' | 3R : R € Neg(f) A f' € Neg(R)}.

If the context is clear, we write 2-step(f) instead of 2-stepg(f). For example, the
2-step neighbourhood of ¢; in the FG depicted in Fig. is given by 2-step(¢1) =
{A,B} U {¢1,¢2}. By G[V’'] we denote the subgraph of a graph G induced by
a subset of nodes V', that is, G[V’] contains only the nodes in V' as well as all
edges from G that connect two nodes in V’. In our example, G|[2-step(¢;)] then
consists of the nodes A, B, ¢, and ¢2, and contains the edges A — ¢, B — ¢1,
and B — ¢2. As it is currently unknown whether a general graph isomorphism
test is solvable in polynomial time, we make use of the notion of symmetric 2-
step neighbourhoods instead of relying on isomorphic 2-step neighbourhoods to
ensure that LIFAGU is implementable in polynomial time.

Definition 4 (Symmetric 2-Step Neighbourhoods). Given an FG G and
factors f;, f; in G, G[2-stepa(fi)] is symmetric to G[2-stepa(f;)] if

1. |Neg(fi)| = [Nec(f;)| and

2. there exists a bijection ¢ : Neg(f;) — Neg(f;) that maps every randvar
Ry, € Neq(fi) to a randvar Ry € Neg(f;) such that the evidence for Ry, and
Ry is identical, R(Ry) = R(Ry), and |[Neg(Rg)| = |[Neg(Re)|-

Lifting Factor Graphs with Some Unknown Factors 7

Algorithm 1: LIFAGU

Input : An FG G with randvars R = {R1,..., R,}, known factors
F=1{f1,..., fm}, unknown factors F' = {f{,..., f.}, and evidence
E ={Ri =r1,...,Ri =}, and a real-valued threshold 6 € [0, 1].
Output: A lifted representation G’ of G.

1 Assign each f; € F a colour based on its potentials;
2 Assign each f; € F' a unique colour;
3 foreach unknown factor f; € F’ do

4 Cr, < {}

5 foreach factor f; € FUF’ with fi # f; do
6 if fz ~ fj then

7 if f; is unknown then

8 ‘ Assign f; the same colour as f;;
9 else
10 | Cr < Cr, U{f}

11 foreach set of candidates C'y; do

12 Cfi < Maximal subset of Cy, such that f; =~ fr holds for all f;, fx € Cﬁi;
13 if |C5,|/|Cy,| > 6 then

14 ‘ Assign all f; € C’fli the same colour as f;;

15 G < Result from calling the CP algorithm on the modified graph G and E;

For example, take a look again at the FG shown in Fig. [3] and assume that
there is no evidence. We can check whether ¢; and ¢ have symmetric 2-step
neighbourhoods: Both ¢; and ¢, are connected to two randvars as Ne(¢;) =
{A, B} and Ne(¢2) = {B, C}, thereby satisfying the first condition. Further, A
can be mapped to C with R(A) = R(C) (Boolean) and |[Ne(A)| = |[Ne(C)| =1
and B can be mapped to itself. Thus, condition two is satisfied and it holds
that G[2-step(¢1)] is symmetric to G[2-step(¢2)]. Having defined the notion of
symmetric 2-step neighbourhoods, we are able to specify a condition for two
factors to be possibly identical. Two factors are considered possibly identical if
the subgraphs induced by their 2-step neighbourhoods are symmetric.

Definition 5 (Possibly Identical Factors). Given two factors f; and f; in
an FG G, we call f; and f; possibly identical, denoted as f; = f;, if

1. G[2-step(fi)] is symmetric to G[2-stepa(f;)] and
2. at least one of f; and f; is unknown, or f; and f; have the same potentials.

The second condition serves to ensure consistency as two factors with different
potentials can obviously not be identical. Applying the definition of possibly
identical factors to ¢ and ¢o from Fig. [3] we can verify that ¢; and ¢y are
indeed possibly identical because they have symmetric 2-step neighbourhoods
and identical potentials. Next, we describe the entire LIFAGU algorithm, which
is illustrated in Algorithm

LIFAGU assigns colours to unknown factors based on symmetric subgraphs
induced by their 2-step neighbourhoods, proceeding as follows for an input G. As

8 Malte Luttermann, Ralf Moller, and Marcel Gehrke

an initialisation step, LIFAGU assigns each known factor a colour based on its
potentials and each unknown factor a unique colour. Then, LIFAGU searches for
possibly identical factors in two phases. In the first phase, all unknown factors
that are possibly identical are assigned the same colour, as there is no way to
distinguish them. Furthermore, LIFAGU collects for every unknown factor f; a
set C'y, of known factors possibly identical to f;. The second phase then continues
to group the unknown factors with known factors, including the transfer of the
potentials from the known factors to the unknown factors. For every unknown
factor f;, LIFAGU computes a maximal subset Cfii C CYy, for which all elements
are pairwise possibly identical. Afterwards, f; and all f; € Cfii are assigned the
same colour if a user-defined threshold is reached. Finally, CP is called on G,
which now includes the previously set colours for the unknown factors in G, to
group both known and unknown factors in G.

The purpose of the threshold 8 is to control the required agreement of known
factors before grouping unknown factors with known factors as it is possible for
an unknown factor to be possibly identical to multiple known factors having
different potentials. A larger 6 requires a higher agreement, e.g., § = 1 requires
all candidates to have identical potentials. Note that all known factors in C’Jlﬁi are
guaranteed to have identical potentials (otherwise they would not be pairwise
possibly identical) and thus, their potentials can be transferred to f;. Conse-
quently, the output of LIFAGU is guaranteed to contain only known factors and
hence ensures a well-defined semantics if CJ‘% is non-empty for each unknown fac-
tor f; and the threshold is sufficiently small (e.g., zero) to group each unknown
factor with at least one known factor.

Corollary 1. Given that for every unknown factor f; there is at least one known
factor that is possibly identical to f; in an FG G, LIFAGU is able to replace all
unknown potentials in G by known potentials.

It is easy to see that LIFAGU is a generalisation of CP, meaning that both
algorithms compute the same result for input FGs containing only known factors
(if an input FG G contains no unknown factors, only the first line and the last
line of Algorithm [1| are executed—which is equivalent to calling CP on G).

Corollary 2. Given an FG that contains only known factors, CP and LIFAGU
output identical groupings of randvars and factors, respectively.

Next, we investigate the practical performance of LIFAGU in our evaluation.

4 Empirical Evaluation

In this section, we present the results of the empirical evaluation for LIFAGU.
To evaluate the performance of LIFAGU, we start with a non-parameterised FG
G where all factors are known, serving as our ground truth. Afterwards, we re-
move the potential mappings for five to ten percent of the factors in G, yielding
an incomplete FG G’ on which LIFAGU is run to obtain a PFG Giiragu. Each
factor f’ whose potentials are removed is chosen randomly under the constraint

Lifting Factor Graphs with Some Unknown Factors 9

0.0015 -
— Lifted Variable Elimination

0.00104 --- Variable Elimination

0.0005 4

— 501
0.0000

time (ms)

KL divergence

N 5 4
0.0005 254

-0.0010 4

0 100 200 0 100 200
d d

Fig. 4: Left: The mean KL divergence on the queried probability distributions
(thick line) as well as the standard deviation of all measured KL divergences for
each choice of d (ribbon around the mean). Right: The mean run time of variable
elimination and lifted variable elimination for each choice of d.

that there exists at least one other factor with known potentials that is possibly
identical to f’. This constraint corresponds to the assumption that there exists
at least one group to which a new individual can be added and it ensures that
after running LIFAGU, probabilistic inference can be performed for evaluation
purposes. Clearly, in our evaluation setting, there is not only a single new in-
dividual but instead a set of new individuals, given by the set of factors whose
potentials are missing. We use a parameter d = 2,4, 8,16, 32, 64, 128, 256 to con-
trol the size of the FG G (and thus, the size of G’). More precisely, for each
choice of d, we evaluate multiple input FGs which contain between 2d and 3d
randvars (and factors, respectively). The potentials of the factors are randomly
generated such that the ground truth G contains between three and five (ran-
domly chosen) cohorts of randvars which should be grouped together, with one
cohort containing roughly 50 percent of all randvars in G while the other cohorts
share the remaining 50 percent of the randvars from G uniformly at random.

We set 8 = 0 to ensure that each unknown factor is grouped with at least one
known factor to be able to perform lifted probabilistic inference on G pagu for
evaluation. To assess the error made by LIFAGU for each choice of d, we pose d
different queries to the ground truth G and to Griraqu, respectively. For each
query, we compute the Kullback-Leibler (KL) divergence [10] between the result-
ing probability distributions for the ground truth G and Gpipagu to measure
the similarity of the query results. The KL divergence measures the difference
of two distributions and its value is zero if the distributions are identical.

In the left plot of Fig. [d we report the mean KL divergence over all queries
for each choice of d. The ribbon around the line illustrates the standard deviation
of the measured KL divergences. We find that the mean KL divergence is close
to zero for all choices of d in practice. Both the mean KL divergence and the
standard deviation of the KL divergences do not show any significant differences
between the various values for d. Note that the depicted standard deviation is

10 Malte Luttermann, Ralf Moller, and Marcel Gehrke

also very small for all choices of d due to the granularity of the y-axis. The
maximum KL divergence measured for any choice of d is about 0.01.

Given our assumptions, a new individual actually belongs to a cohort and
most cohorts behave not completely different. So normally, we trade off accuracy
of query results for the ability to perform inference, which otherwise would not
be possible at all. If the semantics cannot be fixed, missing potentials need to
be guessed to be able to perform inference at all, probably resulting in worse
errors. As we basically perform unsupervised clustering, errors might happen
when grouping unknown factors with known factors. The error might be fur-
ther reduced by increasing the effort when searching for known factors that are
possible candidates for grouping with an unknown factor. For example, it is con-
ceivable to increase the size of the neighbourhood during the search for possible
identical factors at the expense of a higher run time expenditure.

In addition to the error measured by the KL divergence, we also report the
run times of variable elimination on G and lifted variable elimination on the PFG
computed by LIFAGU, i.e., G iragu- The run times are shown in the right plot of
Fig.[d As expected, lifted variable elimination is faster than variable elimination
for larger graphs and the run time of lifted variable elimination increases more
slowly with increasing graph sizes than the run time of variable elimination.
Hence, LIFAGU not only allows to perform probabilistic inference at all, but
also speeds up inference by allowing for lifting probabilistic inference. Note that
there are on average 24 different groups over all settings with the largest domain
size being 87 (for the setting of d = 256), i.e., there are a lot of small groups (of
size one) which diminish the advantage of lifted variable elimination over variable
elimination. We could also obtain more compact PFGs by merging groups that
are not fully identical but similar to a given extent such that the resulting PFG
contains less different groups at the cost of a lower accuracy of query results.
Obtaining a more compact PFG would most likely result in a higher speedup of
lifted variable elimination compared to variable elimination.

5 Conclusion

In this paper, we introduce the LIFAGU algorithm to construct a lifted rep-
resentation for an FG that possibly contains unknown factors. LIFAGU is a
generalisation of the widespread CP algorithm and allows to transfer potentials
from known factors to unknown factors by identifying symmetric subgraphs.
Under the assumption that for every unknown factor there exists at least one
known factor having a symmetric surrounding graph structure to it, LIFAGU is
able to replace all unknown potentials in an FG by known potentials.

Acknowledgements

This work was partially supported by the BMBF project AnoMed. The research
of Malte Luttermann was also partially supported by the Medical Cause and
Effects Analysis (MCEA) project. This preprint has not undergone peer review

Lifting Factor Graphs with Some Unknown Factors 11

or any post-submission improvements or corrections. The Version of Record of
this contribution is published in Lecture Notes in Computer Science, Volume

14294, and is available online at https://doi.org/10.1007/978-3-031-45608-4_25.

References

10.

11.

12.

13.

14.

15.

Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting Symmetries for
Scaling Loopy Belief Propagation and Relational Training. Machine Learning 92,
91-132 (2013)

. Braun, T., Méller, R.: Lifted Junction Tree Algorithm. In: Proceedings of KI 2016:

Advances in Artificial Intelligence (KI-16). pp. 30—-42. Springer (2016)

De Salvo Braz, R., Amir, E., Roth, D.: Lifted First-Order Probabilistic Inference.
In: Proceedings of the Nineteenth International Joint Conference on Artificial In-
telligence (IJCAI-05). pp. 1319-1325. Morgan Kaufmann Publishers Inc. (2005)
De Salvo Braz, R., Amir, E., Roth, D.: MPE and Partial Inversion in Lifted Prob-
abilistic Variable Elimination. In: Proceedings of the T'wenty-First National Con-
ference on Artificial Intelligence (AAAI-06). pp. 1123-1130. AAAI Press (2006)
Gehrke, M., Moller, R., Braun, T.: Taming Reasoning in Temporal Probabilistic
Relational Models. In: Proceedings of the Twenty-Fourth European Conference on
Artificial Intelligence (ECAI-20). pp. 2592-2599. I0S Press (2020)

Hoffmann, M., Braun, T., Moller: Lifted Division for Lifted Hugin Belief Propa-
gation. In: Proceedings of the Twenty-Fifth International Conference on Artificial
Intelligence and Statistics (AISTATS-22). pp. 6501-6510. PMLR (2022)
Kersting, K., Ahmadi, B., Natarajan, S.: Counting Belief Propagation. In: Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
(UAI-09). pp. 277-284. AUAI Press (2009)

Kisynski, J., Poole, D.: Constraint Processing in Lifted Probabilistic Inference. In:
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelli-
gence (UAI-09). pp. 293-302. AUAI Press (2009)

Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor Graphs and the Sum-Product
Algorithm. IEEE Transactions on Information Theory 47, 498-519 (2001)
Kullback, S., Leibler, R.A.: On Information and Sufficiency. The Annals of Math-
ematical Statistics 22, 79-86 (1951)

Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
Probabilistic Inference with Counting Formulas. In: Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence (AAAI-08). pp. 1062-1068. AAAI
Press (2008)

Niepert, M., Van den Broeck, G.: Tractability through Exchangeability: A New Per-
spective on Efficient Probabilistic Inference. In: Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI-14). pp. 2467-2475. AAAT Press
(2014)

Poole, D.: First-Order Probabilistic Inference. In: Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI-03). pp. 985-991.
Morgan Kaufmann Publishers Inc. (2003)

Taghipour, N.; Fierens, D., Davis, J., Blockeel, H.: Lifted Variable Elimination:
Decoupling the Operators from the Constraint Language. Journal of Artificial In-
telligence Research 47, 393-439 (2013)

Weisfeiler, B., Leman, A.A.: The Reduction of a Graph to Canonical Form
and the Algebra which Appears Therein. NTI, Series 2, 12-16 (1968), English

https://doi.org/10.1007/978-3-031-45608-4_25

12 Malte Luttermann, Ralf Moller, and Marcel Gehrke

translation by Grigory Ryabov available at https://www.iti.zcu.cz/wl12018 /pdf/
wl_paper_translation.pdf

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

	Lifting Factor Graphs with Some Unknown Factors

